Research on Regression Prediction of Pressurizer Liquid Level under Ocean Conditions Based on SSA-LSTM Neural Network
-
摘要: 为保证核动力装置在海洋环境下的安全运行,有必要建立一套计算模型获得稳压器内的实时液位。通过搭建实验系统采集相关数据,采用基于麻雀搜索算法(SSA)优化长短期记忆(LSTM)神经网络(SSA-LSTM),根据测得的压力、运动姿态等关键参数建立液位回归预测模型。研究结果表明,所建立的液位回归预测模型预测精度优秀,明显优于其他传统神经网络。此外,该模型的泛化能力良好,对于新鲜样本的预测精度也较高,将其集成到控制系统中可实时输出稳压器液位,从而提高海洋条件下核动力装置运行的安全性,并为后续核动力装置的智能运维提供参考。
-
关键词:
- 海洋条件 /
- 麻雀搜索算法(SSA) /
- 长短期记忆(LSTM)神经网络 /
- 液位回归预测
Abstract: To ensure the safe operation of the nuclear reactor system in the ocean environment, it is necessary to establish a set of computational models to obtain the real-time liquid level in the pressurizer. By building an experimental system to collect relevant data, the Long-Short Term Memory (LSTM) neural network is optimized based on the sparrow search algorithm (SSA), and the liquid level regression prediction model is established according to the measured key parameters such as pressure and motion attitude. The research results show that the prediction accuracy of the established liquid level regression prediction model is excellent, which is obviously better than other traditional neural networks. The model has good generalization ability, and the prediction accuracy of fresh samples is still acceptable. By integrating the model into the control system, the liquid level can be output in real time, which can improve the safety of nuclear power operation under ocean conditions and provide reference for the intelligent operation and maintenance of nuclear power. -
表 1 实验系统各参数的测量精度 %
Table 1. Measurement Accuracy of Experimental System Parameters
参数 仪表不确定度 采集不确定度 B类不确定度 压力 0.025 0.5 0.501 运动姿态 0.330 0.330 水箱质量 0.500 0.5 0.707 表 2 实验工况设置
Table 2. Experimental Operating Conditions
工况编号 水位状态 横摇条件 纵摇条件 P1 上充 15°/5 s P2 下泄 15°/7 s P3 上充 10°/5 s 10°/10 s P4 下泄 10°/7 s 10°/10 s T1 下泄 15°/5 s T2 上充 10°/7 s 10°/10 s T3 上充 15°/7 s T4 下泄 10°/5 s 5°(倾斜) T5 上充 10°/5 s 5°(倾斜) 表 3 不同数据集下的模型表现
Table 3. Model Performance under Various Datasets
数据集/个 RMSE/mm R2 2000 6.838±0.663 0.756±0.048 3000 5.352±0.082 0.849±0.005 4000 4.967±0.167 0.871±0.009 5000 4.371±0.119 0.901±0.005 6000 4.368±0.197 0.903±0.009 7000 4.245±0.228 0.905±0.010 8000 4.291±0.112 0.902±0.006 表 4 不同神经网络下的RMSE数据对比 mm
Table 4. Comparison of RMSE Data under Different Neural Networks
工况编号 LSTM BP ELM T1 4.316 15.211 10.139 T2 2.326 9.386 11.497 T3 4.458 13.238 8.810 T4 13.420 10.795 14.423 T5 2.128 10.053 4.445 -
[1] LI D Y, QUAN Z X, ZHANG B, et al. Study on the liquid level characteristics and reconstruction strategy of the in-vessel pressurizer under ocean conditions[J]. Nuclear Engineering and Design, 2024, 418: 112857. doi: 10.1016/j.nucengdes.2023.112857 [2] WEI T Y, CHEN J R, ZHANG B, et al. Effects of ocean conditions on water level measurement of pressurizer[J]. Annals of Nuclear Energy, 2022, 169: 108913. doi: 10.1016/j.anucene.2021.108913 [3] LI D Y, YUE J Y, WEI T Y, et al. Optimization of pressure tube-type measuring instrument for floating nuclear power plant[J]. Annals of Nuclear Energy, 2024, 205: 110558. doi: 10.1016/j.anucene.2024.110558 [4] CONG T L, SU G H, QIU S Z, et al. Applications of ANNs in flow and heat transfer problems in nuclear engineering: a review work[J]. Progress in Nuclear Energy, 2013, 62: 54-71. doi: 10.1016/j.pnucene.2012.09.003 [5] 张恒,吕雪,刘东,等. 核电人工智能应用: 现状、挑战和机遇[J]. 核动力工程,2023, 44(1): 1-8. [6] 陈涵瀛. 核电站热工水力系统工况预测与诊断方法研究[D]. 哈尔滨: 哈尔滨工程大学,2018. [7] MARSEGUERRA M, ZIO E, AVOGADRI P. Model identification by neuro-fuzzy techniques: predicting the water level in a steam generator of a PWR[J]. Progress in Nuclear Energy, 2004, 44(3): 237-252. doi: 10.1016/S0149-1970(04)90012-1 [8] 谭季秋,鄂加强,钟定清. 联合循环余热锅炉汽包水位晃荡信号智能预测[J]. 中南大学学报: 自然科学版,2012, 43(3): 966-971. [9] 魏天一,张彪,李东阳,等. 海洋条件下小型堆稳压器液位智能预测研究[J]. 哈尔滨工程大学学报,2023, 44(9): 1590-1596. doi: 10.11990/jheu.202201031 [10] 王磊,马驰骋,齐俊艳,等. 基于ARIMA-LSTM的矿区地表沉降预测方法[J]. 计算机工程,2025,51(1): 98-105. [11] 孙大彬,李磊,田兆斐,等. 混合神经网络的包壳峰值温度预测研究[J]. 哈尔滨工程大学学报,2022, 43(12): 1728-1735. [12] 刘岳,于静,金秀章. 基于特征优化和改进长短期记忆神经网络的NO x质量浓度预测[J]. 热力发电,2021, 50(7): 162-169. [13] LI Z L, DU J M, ZHU W M, et al. Regression predictive modeling of high-speed motorized spindle using POA-LSTM[J]. Case Studies in Thermal Engineering, 2024, 54: 104053. doi: 10.1016/j.csite.2024.104053 [14] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735 [15] 薛建凯. 一种新型的群智能优化技术的研究与应用——麻雀搜索算法[D]. 上海: 东华大学,2019. [16] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. -