Ultrasonic Inspection & Data Analysis for Failed Fuel Assembly
-
摘要: 为安全、有效、准确地通过超声检测方法定位核电厂破损燃料组件,根据破损前后燃料棒包壳内壁介质状态会造成包壳中周向Lamb波能量衰减差异的特点,从理论上分析了超声探头在燃料棒间隙移动过程中Lamb波在燃料棒包壳中的传播路径,并对传播声程进行了分析计算,其结果与实际检测数值偏差在±2%范围内。结合超声检测原理和声束传播特点,开发完成了燃料棒包壳回波信号自动识别算法与数据分析软件,可实现检测数据的快速分析筛选。模拟组件试验结果和现场应用均验证了该检测方法对燃料组件中泄漏单棒的破损定位检测是快速、安全、有效的,信号自动识别算法及数据分析软件是准确、可靠的,可为后续破损燃料组件的针对性修复提供依据,提高核燃料的利用率。Abstract: To safely, effectively, and accurately locate failed fuel assemblies in nuclear power plants through ultrasonic inspection methods, this study utilizes the characteristic that the medium state of the inner wall of the fuel cladding before and after damage will cause differences in the attenuation of circumferential Lamb wave energy in the cladding. The propagation path of the Lamb wave in the fuel cladding during the movement of the ultrasonic probe in the gap between fuel assemblies is analyzed theoretically, and the propagation sound path is analyzed and calculated. The deviation between the calculated results and the measured values is within ±2%. Based on the principle of ultrasonic detection and the characteristics of sound beam propagation, the automatic identification algorithm and data analysis software of fuel rod cladding echo signal are developed, which can realize the rapid analysis and screening of detection data. The test results of simulated fuel assemblies and field application verify that the detection method is fast, safe and effective in detecting the damaged location of leaking rods in fuel assemblies, and the automatic signal identification algorithm and data analysis software are accurate and reliable, which can provide a basis for the targeted repair of damaged fuel assemblies in the future and improve the utilization rate of nuclear fuel.
-
Key words:
- Fuel rods /
- Damage location /
- Ultrasonic inspection /
- Data analysis
-
-
[1] 吴中旺,张亚军. 定位检测破损燃料组件的堆芯啜吸法[J]. 清华大学学报: 自然科学版,2000, 40(12): 79-81. [2] 贾亚青,李成业,李劲松,等. 微破损燃料组件离线检漏装置研制[J]. 核动力工程,2016, 37(1): 82-85. [3] 许俊龙,马官兵,王贤彬,等. 核反应堆燃料组件的无损检测和修复[J]. 无损检测,2014, 36(11): 38-41. [4] 任亮,李国云,江林志,等. 压水堆燃料组件池边检查技术研究进展[J]. 科技导报,2015, 33(18): 91-95. [5] BORGERS H, DELERYD R, OLSSON T. Inspection and repair of boiling water reactor fuel assemblies[J]. Kerntechnik, 1991, 56(2): 98-100. doi: 10.1515/kern-1991-560215 [6] THOME Z D, PEREIRA W C A, MACHADO J C, et al. A system for nuclear fuel inspection based on ultrasonic pulse-echo technique[J]. IEEE Transactions on Nuclear Science, 2011, 58(5): 2452-2458. doi: 10.1109/TNS.2011.2164557 [7] 殷振国,王华才,刘歆粤,等. 燃料棒破损超声检测技术研究[J]. 原子能科学技术,2015, 49(2): 324-329. [8] WU B, SU Y P, CHEN W Q, et al. On guided circumferential waves in soft electroactive tubes under radially inhomogeneous biasing fields[J]. Journal of the Mechanics and Physics of Solids, 2017, 99: 116-145. doi: 10.1016/j.jmps.2016.11.004 [9] 李子明,何存富,刘增华,等. 管道周向导波检测技术研究进展及展望[J]. 北京工业大学学报,2018, 44(5): 641-657. [10] 王坤,黄松岭,赵伟. 平板和管道周向Lamb波频散和波结构特性[J]. 清华大学学报: 自然科学版,2009, 49(7): 925-928. [11] 牛雨欣,伍文君,董浩,等. 模态耦合对弯管导波传播特性的影响分析[J]. 武汉理工大学学报,2023, 45(4): 149-156. -