Research and Verification of Subcritical Rod Worth Measurement Method for PWRs Based on Bamboo-C Code
-
摘要: 控制棒价值测量是核电厂核设计验证的重要内容,传统上普遍需要在零功率物理试验中单独设置一段时间,通过硼测法、换棒法或动态刻棒方法实现控制棒价值测量,导致零功率物理试验时间较长,经济性较低。因此,本文提出了三维中子源增殖方法,基于提棒达临界过程中源量程探测器的实测数据以及Bamboo-C软件的三维堆芯数值模拟,实现次临界反应性的测量,进而获得控制棒价值。整个过程直接依赖于现有的提棒达临界规程,具有优异的工程应用能力,能够显著提高核电厂的经济性。采用田湾核电站M310机组某个循环提棒达临界过程的实测数据对本文提出的方法进行验证,验证结果表明,绝大部分的控制棒价值测量值均能够满足±10%的工程验证准则,验证效果较好,证明本文提出的方法具有工程应用的研究价值。Abstract: The measurement of control rod worth is very important for the validation of nuclear design. Conventionally, the control rod worth measurement is carried out through the boron-dilution method, the rod-swap method, or the dynamic rod worth measurement method. These conventional methods lead to the fact that the zero power physics test occupies too long time. Therefore, this paper proposes the three-dimensional neutron source multiplication method. This method can achieve the measurement of subcriticality as well as control rod worth based on the measured source-range detector signals during the rod withdrawal process and the simulation results by Bamboo-C code. The whole flowchart relies on the current procedure of rod withdrawal process. This method has excellent engineering application ability and can significantly improve the economy of nuclear power plants. The measurement data during the rod withdrawal process in the M310-type reactor of Tianwan NPP is adopted for the verification of the proposed method. Most measured results of control rod worth can meet the engineering acceptance criteria (±10%), which proves that the method proposed in this paper has research value in engineering application.
-
表 1 次临界状态的总体信息
Table 1. General Information of Subcritical States
状态点 控制棒棒位/步 SR1计数率/s−1 SR2计数率/s−1 N2 N1 G2 G1 R SA SB SC SD ① 5 5 5 5 5 5 5 5 5 695 668 ② 5 5 5 5 5 225 5 5 5 713 675 ③ 5 5 5 5 5 225 225 5 5 958 904 ④ 5 5 5 5 5 225 225 225 5 957 902 ⑤ 5 5 5 5 5 225 225 225 225 957 908 ⑥ 225 120 5 5 5 225 225 225 225 1132 1079 ⑦ 225 225 135 10 5 225 225 225 225 1173 1115 ⑧ 225 225 225 110 5 225 225 225 225 1234 1171 ⑨ 225 225 225 225 5 225 225 225 225 1252 1188 ⑩ 225 225 225 225 150 225 225 225 225 2321 2221 表 2 次临界反应性结果
Table 2. Subcriticality Results
状态点 理论值/pcm 实测值/pcm 误差/pcm 相对误差/% SR1 SR2 SR1 SR2 SR1 SR2 ① 12699 12707 12708 8 9 0.1 0.1 ② 11687 11525 11730 −161 44 −1.4 0.4 ③ 9443 9573 9699 130 257 1.4 2.7 ④ 8804 8957 9084 153 280 1.7 3.2 ⑤ 7998 8195 8265 197 267 2.5 3.3 ⑥ 6676 6805 6829 130 153 1.9 2.3 ⑦ 5573 5653 5689 80 115 1.4 2.1 ⑧ 4956 5010 5049 54 93 1.1 1.9 ⑨ 4649 4676 4714 27 64 0.6 1.4 1pcm=10−5 表 3 源量程探测器SR1和SR2分别测量的控制棒价值
Table 3. Control Rod Worth Measured by SR1 or SR2
控制棒 理论值/pcm 实测值/pcm 误差/pcm 相对误差/% SR1 SR2 SR1 SR2 SR1 SR2 SA 1012 1182 977 170 −35 16.8 −3.5 SB 2244 1952 2029 −292 −215 −13 −9.5 SC 639 616 615 −23 −24 −3.6 −3.8 SD 806 762 820 −44 14 −5.5 1.7 N2+部分N1 1322 1389 1436 67 114 5.1 8.6 部分N1+部分G2+部分G1 1102 1152 1141 49 39 4.5 3.5 部分G2+部分G1 617 644 639 27 22 4.3 3.6 部分G1 307 333 336 26 29 8.6 9.4 部分R 516 543 580 27 64 5.3 12.5 功率调节棒组 3348 3518 3552 170 204 5.1 6.1 表 4 源量程探测器SR1和SR2测量的控制棒价值平均值
Table 4. Control Rod Worth Measured by Both SR1 and SR2
控制棒 理论值/pcm 实测值/pcm 误差/pcm 相对误差/% SA 1012 1079.5 67.5 6.7 SB 2244 1991.5 −252.5 −11.3 SC 639 615.5 −23.5 −3.7 SD 806 790.5 −15.5 −1.9 N2+部分N1 1322 1412.5 90.5 6.8 部分N1+部分G2+部分G1 1102 1146 44 4.0 部分G2+部分G1 617 641.5 24.5 4.0 部分G1 307 334.5 27.5 9.0 部分R 516 561.5 45.5 8.8 功率调节棒组 3348 3534.5 186.5 5.6 -
[1] CHAO Y A, CHAPMAN D M, HILL D J, et al. Dynamic rod worth measurement[J]. Nuclear Technology, 2000, 132(3): 403-412. doi: 10.13182/NT00-A3153 [2] WAN C H, BAI J H, HUANG Z P, et al. Effects research of multiple-cycle nuclide-number-density distributions on dynamic rod worth measurement[J]. Nuclear Engineering and Design, 2022, 400: 112061. doi: 10.1016/j.nucengdes.2022.112061 [3] BAI J H, WAN C H, LI Y Z, et al. Research of dynamic rod worth measurement technique based on the pin-by-pin response function[J]. Annals of Nuclear Energy, 2023, 193: 110039. doi: 10.1016/j.anucene.2023.110039 [4] 代前进,张佶翱,詹勇杰,等. 压水反应堆达临界的外推修正[J]. 核动力工程,2010, 31(6): 93-95,101. [5] 陈效先,王璠,周琦,等. 启明星Ⅱ号中子吸收体反应性价值测量[J]. 原子能科学技术,2020, 54(2): 302-306. doi: 10.7538/yzk.2019.youxian.0065 [6] PERSSON C M, FOKAU A, SERAFIMOVICH I, et al. Pulsed neutron source measurements in the subcritical ADS experiment YALINA-Booster[J]. Annals of Nuclear Energy, 2008, 35(12): 2357-2364. doi: 10.1016/j.anucene.2008.07.011 [7] 刘东海,张巍,章秩烽,等. 跳源法测量启明星Ⅱ号反应堆次临界度[J]. 核电子学与探测技术,2019, 39(1): 1-4. doi: 10.3969/j.issn.0258-0934.2019.01.001 [8] 张潇湘. 基于逆动态法的次临界系统次临界度重构方法研究[D]. 合肥: 中国科学技术大学,2017. [9] SZIEBERTH M, KLUJBER G, KLOOSTERMAN J L, et al. Measurement of multiple α-modes at the Delphi subcritical assembly by neutron noise techniques[J]. Annals of Nuclear Energy, 2015, 75: 146-157. doi: 10.1016/j.anucene.2014.07.018 [10] LEE E K, PARK D H, CHOI H. Experimental determination of subcriticality at subcritical PWRs in Korea[J]. Annals of Nuclear Energy, 2010, 37(11): 1601-1608. doi: 10.1016/j.anucene.2010.06.022 [11] AHN J G, CHO N Z, KUH J E. Generation of spatial weighting functions for ex-core detectors by adjoint transport calculation[J]. Nuclear Technology, 1993, 103(1): 114-121. doi: 10.13182/NT93-A34834 [12] XU L F, SHEN H Y, WEI J X, et al. Study of the PWR ex-core detector response simulation based on the 3D SN method[J]. Annals of Nuclear Energy, 2020, 139: 107223. doi: 10.1016/j.anucene.2019.107223 [13] WANG Y P, ZHENG Y Q, XU L F, et al. NECP-hydra: a high-performance parallel SN code for core-analysis and shielding calculation[J]. Nuclear Engineering and Design, 2020, 366: 110711. doi: 10.1016/j.nucengdes.2020.110711 [14] 万承辉,李云召,郑友琦,等. 压水堆燃料管理软件Bamboo-C研发及工业确认[J]. 核动力工程,2021, 42(5): 15-22.