高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SST k-ω-γ模型修正及其对螺旋管内层流向湍流转捩过程的预测

蔡昀彤 赵后剑 李晓伟 苏阳 鹿一鸣 郭张鹏 刘芳

蔡昀彤, 赵后剑, 李晓伟, 苏阳, 鹿一鸣, 郭张鹏, 刘芳. SST k-ω-γ模型修正及其对螺旋管内层流向湍流转捩过程的预测[J]. 核动力工程, 2024, 45(6): 55-62. doi: 10.13832/j.jnpe.2024.06.0055
引用本文: 蔡昀彤, 赵后剑, 李晓伟, 苏阳, 鹿一鸣, 郭张鹏, 刘芳. SST k-ω-γ模型修正及其对螺旋管内层流向湍流转捩过程的预测[J]. 核动力工程, 2024, 45(6): 55-62. doi: 10.13832/j.jnpe.2024.06.0055
Cai Yuntong, Zhao Houjian, Li Xiaowei, Su Yang, Lu Yiming, Guo Zhangpeng, Liu Fang. Modified SST k-ω-γ Model and Prediction of Laminar to Turbulent Flow Transition in Helical Tube[J]. Nuclear Power Engineering, 2024, 45(6): 55-62. doi: 10.13832/j.jnpe.2024.06.0055
Citation: Cai Yuntong, Zhao Houjian, Li Xiaowei, Su Yang, Lu Yiming, Guo Zhangpeng, Liu Fang. Modified SST k-ω-γ Model and Prediction of Laminar to Turbulent Flow Transition in Helical Tube[J]. Nuclear Power Engineering, 2024, 45(6): 55-62. doi: 10.13832/j.jnpe.2024.06.0055

SST k-ω-γ模型修正及其对螺旋管内层流向湍流转捩过程的预测

doi: 10.13832/j.jnpe.2024.06.0055
基金项目: 国家重点研发计划资助项目(2022YFB1902503);国家自然科学基金面上项目(12275084)
详细信息
    作者简介:

    蔡昀彤(2002—),女,硕士研究生,现主要从事螺旋管管内流动换热方面研究,E-mail: yuntongcai@ncepu.edu.cn

    通讯作者:

    赵后剑,E-mail: zhaohoujian@ncepu.edu.cn

  • 中图分类号: TK124;TL334

Modified SST k-ω-γ Model and Prediction of Laminar to Turbulent Flow Transition in Helical Tube

  • 摘要: 螺旋管式换热器因具有结构紧凑和换热性能好等优点,在各领域被广泛应用。区别于直管内流动,流体在螺旋管内流动时会受到离心力作用。由于离心力的存在,螺旋管内层流向湍流转捩的临界雷诺数会随着螺旋曲率的增大而增大。本文采用数值方法研究了螺旋管内层流向湍流的转捩过程,通过分析阻力系数随雷诺数的变化关系,对比剪切应力输运(SST) k-ω-γ-Reθ模型和SST k-ω-γ模型模拟转捩过程的准确性,分析了不同入口湍流强度(5%、10%)对计算结果的影响。SST k-ω-γ-Reθ模型对入口湍流强度较敏感,而SST k-ω-γ模型受入口湍流强度影响较小。与前人经验关系式相比,SST k-ω-γ模型模拟得到的临界雷诺数偏大。本文通过调节SST k-ω-γ模型中γ输运方程的经验系数,发现经验系数CTU1对转捩起始点有较大影响,同一曲率下,临界雷诺数随CTU1增大而增大。本文基于现有经验公式确定了不同曲率螺旋管(0.02、0.04、0.06、0.11)所对应的CTU1,并拟合得到螺旋曲率和CTU1的关联式,验证了修正后SST k-ω-γ模型模拟螺旋管内层流和湍流阻力系数的准确性,比较了SST k-ω模型和修正SST k-ω-γ模型计算结果中速度、湍动能以及湍流粘度等变量的不同。

     

  • 图  1  螺旋管结构示意图

    Figure  1.  Schematic Diagram of Helical Tube Structure

    图  2  不同入口湍流强度时的阻力系数

    Figure  2.  Friction Factors with Different Inlet Turbulent Intensities

    图  3  不同CTU1对阻力系数的影响

    Figure  3.  Friction Factors with Different CTU1

    图  4  不同CTU1γwall的影响

    Figure  4.  γwall with Different CTU1

    图  5  δ=0.02时阻力系数随雷诺数的变化

    Figure  5.  Variation of Friction Factor with Reynolds Number (δ=0.02)

    图  6  δ=0.11时阻力系数随雷诺数的变化

    Figure  6.  Variation of Friction Factor with Reynolds Number (δ=0.11)

    图  7  修正SST k-ω-γ模型的阻力系数结果

    Figure  7.  Friction Factors with Modified SST k-ω-γ Model

    图  8  不同湍流模型所计算的阻力系数

    Figure  8.  Friction Factors Calculated by Different Turbulent Models

    图  9  周向切应力分布

    Figure  9.  Wall Shear Stress Distributions

    图  10  δ=0.11、Re=6000时截面内速度分布

    Figure  10.  Velocity Distribution in Cross Section when δ=0.11 and Re=6000

    图  11  δ=0.11、Re=6000时截面内湍流间歇性分布

    Figure  11.  Turbulent Intermittency Distribution in Cross Section when δ=0.11 and Re=6000

    图  12  δ=0.11、Re=6000时截面内湍动能分布

    Figure  12.  Turbulent Kinetic Energy Distribution in Cross Section when δ=0.11 and Re=6000

    图  13  湍动能和湍流粘度云图

    Figure  13.  Contour of Turbulent Kinetic Energy and Turbulent Viscosity

    表  1  不同曲率螺旋管几何参数

    Table  1.   Geometric Parameters of Helical Tubes with Different Curvatures

    δ δmod r0/mm R/mm P/mm
    0.02 0.0195 4 200 31
    0.04 0.0390 4 100 16.5
    0.06 0.0584 6 100 17
    0.11 0.1038 4 36 16
    下载: 导出CSV

    表  2  不同网格间的最大相对误差

    Table  2.   Maximum Relative Error between Different Grids

    δ 低精度网格数量/105 高精度网格数量/105 ζmax/%
    0.02 33.6 80.9 0.96
    0.04 25.0 55.6 1.00
    0.06 23.6 75.2 0.78
    下载: 导出CSV

    表  3  不同模型经验系数所计算的阻力系数

    Table  3.   Friction Factors with Different Model Coefficients

    经验系数CTU1 经验系数CTU3 经验系数β* f
    60 1 0.09 0.0334
    70 1 0.09 0.0293
    80 1 0.09 0.0248
    90 1 0.09 0.0248
    100 1.1 0.09 0.0248
    100 1.2 0.09 0.0248
    100 1.3 0.09 0.0248
    100 1.4 0.09 0.0248
    100 1 0.095 0.0247
    100 1 0.098 0.0247
    100 1 0.101 0.0247
    100 1 0.104 0.0246
    下载: 导出CSV

    表  4  不同曲率下的CTU1

    Table  4.   CTU1 for Different δmod

    δmod 推荐CTU1 Recri
    数值结果 式(18)
    0.0195 50 5600 5700
    0.0390 47 7300 7100
    0.0584 46 8500 8100
    0.1038 45 10700 9700
    下载: 导出CSV
  • [1] ZHAO H J, LI X W, WU X X. New friction factor equations developed for turbulent flows in rough helical tubes[J]. International Journal of Heat and Mass Transfer, 2016, 95: 525-534. doi: 10.1016/j.ijheatmasstransfer.2015.12.035
    [2] ZHAO H J, LI X W, WU X X. New friction factor and Nusselt number equations for turbulent convection of liquids with variable properties in circular tubes[J]. International Journal of Heat and Mass Transfer, 2018, 124: 454-462. doi: 10.1016/j.ijheatmasstransfer.2018.03.082
    [3] 李晓伟,吴莘馨,张作义,等. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报: 自然科学版,2021, 61(4): 329-337.
    [4] LI X W, GAO W K, SU Y, et al. Thermal analysis of HTGR helical tube once through steam generators using 1D and 2D methods[J]. Nuclear Engineering and Design, 2019, 355: 110352. doi: 10.1016/j.nucengdes.2019.110352
    [5] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(2): 2894-2906.
    [6] CONTENT C, HOUDEVILLE R. Application of the γ-Rθ laminar-turbulent transition model in Navier-Stokes computations[C]//40th Fluid Dynamics Conference and Exhibit. Chicago: AIAA, 2010.
    [7] MALAN P, SULUKSNA K, JUNTASARO E. Calibrating the γ-Reθ transition model for commercial CFD[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2009.
    [8] GRABE C, KRUMBEIN A. Extension of the γ-Reθt model for prediction of crossflow transition[C]//52nd Aerospace Sciences Meeting. National Harbor: AIAA, 2014.
    [9] MEDIDA S, BAEDER J. A new crossflow transition onset criterion for RANS turbulence models[C]//21st AIAA Computational Fluid Dynamics Conference. San Diego: AIAA, 2013.
    [10] DASSLER P, KOZULOVIC D, FIALA A. Transport equation for roughness effects on laminar-turbulent transition[C]//The 15th International Conference on Fluid Flow Technologies. Budapest, Hungary: CMFF, 2012.
    [11] MENTER F R, SMIRNOV P E, LIU T, et al. A one-equation local correlation-based transition model[J]. Flow, Turbulence and Combustion, 2015, 95(4): 583-619. doi: 10.1007/s10494-015-9622-4
    [12] ABRAHAM J P, SPARROW E M, GORMAN J M, et al. Application of an intermittency model for laminar, transitional, and turbulent internal flows[J]. Journal of Fluids Engineering, 2019, 141(7): 071204. doi: 10.1115/1.4042664
    [13] DI PIAZZA I, CIOFALO M. Transition to turbulence in toroidal pipes[J]. Journal of Fluid Mechanics, 2011, 687: 72-117. doi: 10.1017/jfm.2011.321
    [14] ZHAO H J, LI X W, WU Y J, et al. Friction factor and Nusselt number correlations for forced convection in helical tubes[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119759. doi: 10.1016/j.ijheatmasstransfer.2020.119759
    [15] ITO H. Theoretical and experimental investigation concerning the flow through curved pipes[C]//Mem Inst High Speed Mech. Tohoku University, 1959.
    [16] MORI Y, NAKAYAMA W. Study of forced convective heat transfer in curved pipes (2nd report, turbulent region)[J]. International Journal of Heat and Mass Transfer, 1967, 10(1): 37-59.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 修回日期:  2024-10-09
  • 刊出日期:  2024-12-17

目录

    /

    返回文章
    返回