高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横流作用下射流降膜变形与破碎过程研究

陈秋香 胡鸿飞 王海军 杨旷 许博

陈秋香, 胡鸿飞, 王海军, 杨旷, 许博. 横流作用下射流降膜变形与破碎过程研究[J]. 核动力工程, 2024, 45(6): 75-83. doi: 10.13832/j.jnpe.2024.06.0075
引用本文: 陈秋香, 胡鸿飞, 王海军, 杨旷, 许博. 横流作用下射流降膜变形与破碎过程研究[J]. 核动力工程, 2024, 45(6): 75-83. doi: 10.13832/j.jnpe.2024.06.0075
Chen Qiuxiang, Hu Hongfei, Wang Haijun, Yang Kuang, Xu Bo. Study on the Deformation and Breakup Process of Jet Falling Film in Crossflow[J]. Nuclear Power Engineering, 2024, 45(6): 75-83. doi: 10.13832/j.jnpe.2024.06.0075
Citation: Chen Qiuxiang, Hu Hongfei, Wang Haijun, Yang Kuang, Xu Bo. Study on the Deformation and Breakup Process of Jet Falling Film in Crossflow[J]. Nuclear Power Engineering, 2024, 45(6): 75-83. doi: 10.13832/j.jnpe.2024.06.0075

横流作用下射流降膜变形与破碎过程研究

doi: 10.13832/j.jnpe.2024.06.0075
详细信息
    作者简介:

    陈秋香(1996—),女,博士研究生,现主要从事两相流流动与传热方面研究,E-mail: qx3119103082@stu.xjtu.edu.cn

    通讯作者:

    王海军,E-mail: whj@mail.xjtu.edu.cn

  • 中图分类号: TL334

Study on the Deformation and Breakup Process of Jet Falling Film in Crossflow

  • 摘要: 为探究横流作用下射流降膜变形与破碎过程,基于计算流体动力学(CFD)软件进行两相数值模拟。研究发现,降膜流动惯性和初始开尔文-亥姆霍兹(K-H)不稳定波的横向发展导致降膜在流动初期发生横向断裂,从而形成若干干涸处,降膜迎风侧相比背风侧更早出现干涸处。横流作用下的降膜主要存在两种破碎模式:液膜破碎和表面破碎,其中液膜破碎是指瑞利-泰勒(R-T)不稳定波主导下降膜发生的沿流向的断裂破碎,表面破碎则是指K-H不稳定波主导下降膜迎风侧液丝和液滴的剥离。液气动量比对横流作用下射流降膜的变形与破碎过程有重要影响,当液气动量比大于13.16时,降膜以表面破碎为主;随着液气动量比的减小,降膜的表面破碎和液膜破碎同时增强,降膜破碎显著增加。射流降膜的连续流动长度和展向宽度均随液气动量比的增大而增大,降膜的偏移距离随液气动量比的增大而减小。

     

  • 图  1  计算域

    Figure  1.  Computational Domain

    图  2  网格模型

    Figure  2.  Mesh Model

    图  3  不同网格数量下的射流降膜流动形状

    Figure  3.  Flow Shape of Jet Falling Film under Different Mesh Numbers

    图  4  Z=−0.115 m平面上液膜厚度分布比较

    Figure  4.  Comparison of Liquid Film Thickness Distribution on the Plane of Z=−0.115 m

    图  5  射流降膜在横流作用下的宏观流动特性

    Figure  5.  Macroscopic Flow Characteristics of Jet Falling Film under Cross-flow

    图  6  降膜横截面的变形过程

    Figure  6.  Deformation Process of the Falling Film Cross-section

    图  7  Z=−3.588d平面降膜的流动特性

    Figure  7.  Flow Characteristics of Falling Film on the Plane of Z=−3.588d

    图  8  流动初始阶段降膜的横向断裂过程

    Figure  8.  Transverse Fracture Process of Falling Film in the Initial Stage of Flow

    图  9  距冲击壁面0.002 m平面及Z=−7.523d 平面处的压力云图

    Figure  9.  Pressure Contour at 0.002 m from the Impact Wall and at Z=−7.523d

    图  10  液膜破碎过程

    Figure  10.  Liquid Film Breakup Process

    图  11  Z=−15.741d平面处降膜的流场信息

    Figure  11.  Flow Field Information of Falling Film on the Plane of Z=−15.741d

    图  12  迎风侧液丝的生长及破碎过程

    Figure  12.  Growth and Breakup Process of Liquid Filament on the Windward Side

    图  13  不同液气动量比下射流降膜的变形与破碎过程

    Figure  13.  Deformation and Breakup Process of Jet Falling Film under Different Liquid to Gas Momentum Ratios

    图  14  降膜连续流动长度随液气动量比的变化

    Figure  14.  Variation of Continuous Flow Length of Falling Film with Liquid to Gas Momentum Ratio

    图  15  降膜迎风侧轮廓线和降膜偏移距离随液气动量比的变化

    Figure  15.  Variation of Windward Profile and Offset Distance of Falling Film with Liquid to Gas Momentum Ratio

    图  16  降膜展向宽度随液气动量比变化

    Figure  16.  Variation of Falling Film Spanwise Width with Liquid to Gas Momentum Ratio

    表  1  工质的物性

    Table  1.   Physical Properties of Working Fluids

    液体密度ρl/(kg·m−3) 气体密度ρg/(kg·m−3) 液体粘度μl/(Pa·s) 气体粘度μg/(Pa·s) 表面张力系数σ/(N·m−1)
    998.2 1.204 1.0×10−3 1.82×10−5 0.073
    下载: 导出CSV
  • [1] 赵波,唐万松,王翼鹏,等. 斜射流对壁面传热特性影响的仿真分析[J]. 机械,2022, 49(1): 1-8.
    [2] WILSON D I, LE B L, DAO H D A, et al. Surface flow and drainage films created by horizontal impinging liquid jets[J]. Chemical Engineering Science, 2012, 68(1): 449-460. doi: 10.1016/j.ces.2011.10.003
    [3] 翁羽,王海军,王海涛,等. CAP1000反应堆堆内构件在直接安注下流动传热特性研究[J]. 核动力工程,2018, 39(4): 16-21.
    [4] 唐亮,李平,周立新,等. 倾斜射流撞壁形成的液膜外形的理论建模[J]. 推进技术,2021, 42(2): 327-334.
    [5] CHO H K, YUN B J, SONG C H, et al. Experimental study for multidimensional ECC behaviors in downcomer annuli with direct vessel injection mode during the LBLOCA reflood phase[J]. Journal of Nuclear Science and Technology, 2005, 42(6): 549-558. doi: 10.1080/18811248.2004.9726421
    [6] LEE D W, NO H C, KIM H G, et al. An experimental study of thermal-hydraulic phenomena in the downcomer with a direct vessel injection system of APR1400 during the LBLOCA reflood phase[J]. Journal of Nuclear Science and Technology, 2004, 41(4): 440-447. doi: 10.1080/18811248.2004.9715506
    [7] YANG J H, CHO H K, KIM S, et al. Experimental study on two-dimensional film flow with local measurement methods[J]. Nuclear Engineering and Design, 2015, 294: 137-151. doi: 10.1016/j.nucengdes.2015.07.073
    [8] YANG J H, EUH D J, CHO H K, et al. Development of wall and interfacial friction models for two-dimensional film flow with local measurement methods[J]. Nuclear Engineering and Design, 2018, 336: 141-153. doi: 10.1016/j.nucengdes.2017.10.015
    [9] YANG J H, CHOI C J, CHO H K, et al. Assessment of wall friction model in multi-dimensional component of MARS with air–water cross flow experiment[J]. Nuclear Engineering and Design, 2017, 312: 106-120. doi: 10.1016/j.nucengdes.2016.06.018
    [10] KIM H, CHEN L S, LEE J. Characteristics of vertically falling liquid film affected by cross gas flow in a narrow flat channel[J]. Nuclear Engineering and Design, 2020, 357: 110393. doi: 10.1016/j.nucengdes.2019.110393
    [11] KIM H S, LEE J Y, KIM J, et al. Visualization of droplet entrainment generated from interactions between falling film flow and lateral air flow[J]. Journal of Flow Visualization and Image Processing, 2016, 23(3-4): 193-213. doi: 10.1615/JFlowVisImageProc.2017019245
    [12] WENG Y, WANG H T, CAI B A, et al. Flow mixing and heat transfer in nuclear reactor vessel with direct vessel injection[J]. Applied Thermal Engineering, 2017, 125: 617-632. doi: 10.1016/j.applthermaleng.2017.07.040
    [13] 张彬,成鹏,李清廉,等. 液体横向射流在气膜作用下的破碎过程[J]. 物理学报,2021, 70(5): 054702.
    [14] 李春,沈赤兵,李清廉,等. 超声速气流中液体横向射流一次破碎过程[J]. 国防科技大学学报,2019, 41(4): 73-78. doi: 10.11887/j.cn.201904011
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-11
  • 修回日期:  2024-03-30
  • 刊出日期:  2024-12-17

目录

    /

    返回文章
    返回