Study on the Deformation and Breakup Process of Jet Falling Film in Crossflow
-
摘要: 为探究横流作用下射流降膜变形与破碎过程,基于计算流体动力学(CFD)软件进行两相数值模拟。研究发现,降膜流动惯性和初始开尔文-亥姆霍兹(K-H)不稳定波的横向发展导致降膜在流动初期发生横向断裂,从而形成若干干涸处,降膜迎风侧相比背风侧更早出现干涸处。横流作用下的降膜主要存在两种破碎模式:液膜破碎和表面破碎,其中液膜破碎是指瑞利-泰勒(R-T)不稳定波主导下降膜发生的沿流向的断裂破碎,表面破碎则是指K-H不稳定波主导下降膜迎风侧液丝和液滴的剥离。液气动量比对横流作用下射流降膜的变形与破碎过程有重要影响,当液气动量比大于13.16时,降膜以表面破碎为主;随着液气动量比的减小,降膜的表面破碎和液膜破碎同时增强,降膜破碎显著增加。射流降膜的连续流动长度和展向宽度均随液气动量比的增大而增大,降膜的偏移距离随液气动量比的增大而减小。Abstract: To investigate the deformation and breakup process of jet falling film in crossflow, a two-phase numerical simulation based on CFD software is conducted in this study. It is found that the inertia of the falling film flow and the lateral development of the initial Kelvin-Helmholtz (K-H) instability wave lead to the lateral fracture of the falling film in the initial stage of flow, resulting in the formation of several dry spots, while the dry spot occurs earlier on the windward side of the falling film than on the leeward side. The results show that there are two main breakup modes of falling film in crossflow: liquid film breakup and surface breakup. Liquid film breakup refers to the fracture and breakup along the flow direction of the falling film dominated by the Rayleigh-Taylor (R-T) unstable wave, while surface breakup refers to the peeling of liquid filaments and droplets on the windward side of the falling film dominated by the K-H unstable wave. The liquid to gas momentum ratio plays a significant role on the deformation and breakup process of jet falling film in crossflow. When the liquid to gas momentum ratio is greater than 13.16, surface breakup is the main breakup form of falling film. As the liquid to gas momentum ratio decreases, both surface breakup and liquid film breakup of the falling film increase simultaneously, leading to a significant increase of the falling film breakup. The continuous flow length and spanwise width of the jet falling film increase with the increase of the liquid to gas momentum ratio, while the offset distance of the falling film decreases with the increase of the liquid to gas momentum ratio.
-
Key words:
- Jet falling film /
- Crossflow /
- Surface wave /
- Deformation and breakup /
- Liquid to gas momentum ratio
-
表 1 工质的物性
Table 1. Physical Properties of Working Fluids
液体密度ρl/(kg·m−3) 气体密度ρg/(kg·m−3) 液体粘度μl/(Pa·s) 气体粘度μg/(Pa·s) 表面张力系数σ/(N·m−1) 998.2 1.204 1.0×10−3 1.82×10−5 0.073 -
[1] 赵波,唐万松,王翼鹏,等. 斜射流对壁面传热特性影响的仿真分析[J]. 机械,2022, 49(1): 1-8. [2] WILSON D I, LE B L, DAO H D A, et al. Surface flow and drainage films created by horizontal impinging liquid jets[J]. Chemical Engineering Science, 2012, 68(1): 449-460. doi: 10.1016/j.ces.2011.10.003 [3] 翁羽,王海军,王海涛,等. CAP1000反应堆堆内构件在直接安注下流动传热特性研究[J]. 核动力工程,2018, 39(4): 16-21. [4] 唐亮,李平,周立新,等. 倾斜射流撞壁形成的液膜外形的理论建模[J]. 推进技术,2021, 42(2): 327-334. [5] CHO H K, YUN B J, SONG C H, et al. Experimental study for multidimensional ECC behaviors in downcomer annuli with direct vessel injection mode during the LBLOCA reflood phase[J]. Journal of Nuclear Science and Technology, 2005, 42(6): 549-558. doi: 10.1080/18811248.2004.9726421 [6] LEE D W, NO H C, KIM H G, et al. An experimental study of thermal-hydraulic phenomena in the downcomer with a direct vessel injection system of APR1400 during the LBLOCA reflood phase[J]. Journal of Nuclear Science and Technology, 2004, 41(4): 440-447. doi: 10.1080/18811248.2004.9715506 [7] YANG J H, CHO H K, KIM S, et al. Experimental study on two-dimensional film flow with local measurement methods[J]. Nuclear Engineering and Design, 2015, 294: 137-151. doi: 10.1016/j.nucengdes.2015.07.073 [8] YANG J H, EUH D J, CHO H K, et al. Development of wall and interfacial friction models for two-dimensional film flow with local measurement methods[J]. Nuclear Engineering and Design, 2018, 336: 141-153. doi: 10.1016/j.nucengdes.2017.10.015 [9] YANG J H, CHOI C J, CHO H K, et al. Assessment of wall friction model in multi-dimensional component of MARS with air–water cross flow experiment[J]. Nuclear Engineering and Design, 2017, 312: 106-120. doi: 10.1016/j.nucengdes.2016.06.018 [10] KIM H, CHEN L S, LEE J. Characteristics of vertically falling liquid film affected by cross gas flow in a narrow flat channel[J]. Nuclear Engineering and Design, 2020, 357: 110393. doi: 10.1016/j.nucengdes.2019.110393 [11] KIM H S, LEE J Y, KIM J, et al. Visualization of droplet entrainment generated from interactions between falling film flow and lateral air flow[J]. Journal of Flow Visualization and Image Processing, 2016, 23(3-4): 193-213. doi: 10.1615/JFlowVisImageProc.2017019245 [12] WENG Y, WANG H T, CAI B A, et al. Flow mixing and heat transfer in nuclear reactor vessel with direct vessel injection[J]. Applied Thermal Engineering, 2017, 125: 617-632. doi: 10.1016/j.applthermaleng.2017.07.040 [13] 张彬,成鹏,李清廉,等. 液体横向射流在气膜作用下的破碎过程[J]. 物理学报,2021, 70(5): 054702. [14] 李春,沈赤兵,李清廉,等. 超声速气流中液体横向射流一次破碎过程[J]. 国防科技大学学报,2019, 41(4): 73-78. doi: 10.11887/j.cn.201904011