Analysis and Research on Axial Stiffness Model and Influencing Factors of PWR Fuel Assembly
-
摘要: 目前国内商业压水堆燃料组件事故工况轴向分析模型主要依赖国外技术转让,在理论机理研究深度上明显不足。本文从燃料组件的基本结构特征出发,基于基本的力学理论,首先建立较小的基本结构特征单元模型并分析其轴向刚度,进而合理推广该基本结构模型并建立整体的燃料组件轴向分析模型。基于提出的分析模型,开展了格架层数、夹持系统以及导向管厚度三方面的轴向刚度敏感性分析,分析结果表明格架层数与组件轴向刚度呈负相关性,格架夹持力影响燃料棒滑移力阈值,导向管厚度增加引起组件轴向刚度增加。本文研究结果可为新型燃料组件事故工况轴向模型研究提供新的思路。Abstract: Currently, the axial analysis model for domestic commercial PWR fuel assembly accident condition mainly relies on foreign technology transfer, and the theoretical mechanism research depth is obviously insufficient. Based on the basic structural characteristics of fuel assembly and the basic mechanical theory, a small basic structure element model is established in this paper and its axial stiffness is analyzed, and then the basic model is reasonably extended to establish the entire fuel assembly axial analysis model. With the obtained analysis model, the sensitivity analysis of axial stiffness is conducted from three aspects of grid number, clamping system and guide thimble thickness. The analysis results show that the number of grid is negatively correlated with the axial stiffness of the assembly, the clamping force of the grid affects the sliding force threshold of the fuel rod, and the axial stiffness increases with the guide thimble thickness. The research results of this paper can provide new ideas for axial model research of new type fuel assembly under accident conditions.
-
Key words:
- Fuel assembly /
- Axial stiffness /
- Analysis model /
- Sensitivity
-
表 1 典型组件的各跨燃料棒及导向管轴向刚度
Table 1. Axial Stiffness of Fuel Rods and Guide Thimbles on Each Span for Typical Fuel Assembly
跨 导向管轴向刚度
Ki /(N·mm−1)燃料棒轴向刚度
Kr_i /(N·mm−1)l1跨 605993.4 l2跨 88292.0 794279.8 l3跨 88461.1 795801.4 l4跨 88478.1 795953.9 l5跨 88461.1 795801.4 l6跨 88461.1 795801.4 l7跨 88461.1 795801.4 l8跨 144669.7 669527.5 l9跨 1301783.5 表 2 不同格架跨的组件刚度计算对比
Table 2. Comparison of Fuel Assembly Axial Stiffness with Different Number of Grids
格架层数 燃料棒滑移前
组件轴向刚度/
(N·mm−1)燃料棒第一次
滑移后组件轴向
刚度/(N·mm−1)备注 8层 95842.1 62042.7 原组件 7层 107517.9 66734.0 去掉l2跨 6层 122400.7 72181.4 去掉l2跨、l3跨 5层 142061.2 78595.9 去掉l2跨、l3跨、l4跨 表 3 不同导向管内径的组件刚度计算对比
Table 3. Comparison of Fuel Assembly Axial Stiffness with Different Guide Thimble Thicknesses
上部导向管
内径/mm燃料棒滑移前组件
轴向刚度/(N·mm−1)燃料棒第一次滑移后组件
轴向刚度/(N·mm−1)11.45 95842.1 62042.7 11.35 97832.9 63405.1 11.25 99645.6 64623.8 11.15 101314.3 65726.0 11.05 102864.5 66732.2 -
[1] 国家能源局. 压水堆核电厂反应堆系统设计 堆芯 第3部分: 燃料组件: NB/T 20057.3-2012[S]. 北京: 原子能出版社,2012: 3. [2] NRC. Standard review plan 4.2 fuel system design: NUREG-0800[S]. Rockville: U. S. Nuclear Regulatory Commission, 2007:7. [3] 田盛,程蓉珍. 压水堆燃料组件设计准则[J]. 核动力工程,1986, 7(3): 27-32. [4] 肖忠. 秦山二期工程燃料组件LOCA和SSE下的事故分析[J]. 核动力工程,2000, 21(6): 511-514. [5] 毛庆,余红星,肖忠,等. 核反应堆地震和失水事故下结构动力学分析研究[J]. 核动力工程,2002, 23(S1): 93-98. [6] 张重珠,张忠岳. 燃料组件的地震和失水事故响应——FAMSAP程序的应用[J]. 原子能科学技术,1993, 27(4): 353-358. [7] 谢永诚,姚伟达,姜南燕. 燃料组件在地震和失水工况下的结构动力学反应分析[J]. 核动力工程,2002, 23(S1): 139-147. [8] 周云清,刘家正,朱丽兵. 地震加LOCA下的燃料组件安全分析研究[J]. 核动力工程,2011, 32(S1): 83-86. [9] 齐欢欢,沈平川,吴万军,等. 燃料组件导向管事故工况应力计算方法研究[J]. 应用数学和力学,2016, 37(5): 534-541. [10] 齐欢欢,吴万军,沈平川,等. 基于ANSYS的燃料组件事故动力分析程序[J]. 核动力工程,2018, 39(3): 40-44. [11] AISCH F W, FUCHS H P, LETTAU H. FOCUS-type fuel assembly for PWRs[J]. Nuclear Engineering and Design, 1993, 147(1): 105-110.