高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inconel 690蒸汽发生器传热管微振磨损的极限尺寸研究

李田 薛冬林 陈艳慧 邵春兵 黄淞 惠虎 焦鹏

李田, 薛冬林, 陈艳慧, 邵春兵, 黄淞, 惠虎, 焦鹏. Inconel 690蒸汽发生器传热管微振磨损的极限尺寸研究[J]. 核动力工程, 2024, 45(6): 147-152. doi: 10.13832/j.jnpe.2024.06.0147
引用本文: 李田, 薛冬林, 陈艳慧, 邵春兵, 黄淞, 惠虎, 焦鹏. Inconel 690蒸汽发生器传热管微振磨损的极限尺寸研究[J]. 核动力工程, 2024, 45(6): 147-152. doi: 10.13832/j.jnpe.2024.06.0147
Li Tian, Xue Donglin, Chen Yanhui, Shao Chunbing, Huang Song, Hui Hu, Jiao Peng. Study on Limitation Size of Fretting Wear of Inconel 690 Steam Generator Tube[J]. Nuclear Power Engineering, 2024, 45(6): 147-152. doi: 10.13832/j.jnpe.2024.06.0147
Citation: Li Tian, Xue Donglin, Chen Yanhui, Shao Chunbing, Huang Song, Hui Hu, Jiao Peng. Study on Limitation Size of Fretting Wear of Inconel 690 Steam Generator Tube[J]. Nuclear Power Engineering, 2024, 45(6): 147-152. doi: 10.13832/j.jnpe.2024.06.0147

Inconel 690蒸汽发生器传热管微振磨损的极限尺寸研究

doi: 10.13832/j.jnpe.2024.06.0147
详细信息
    作者简介:

    李 田(1988—),男,硕士研究生,高级工程师,现主要从事在役检查规范控制相关工作,E-mail: ltworkhard@qq.com

  • 中图分类号: TL334

Study on Limitation Size of Fretting Wear of Inconel 690 Steam Generator Tube

  • 摘要: 以含微振磨损缺陷的Inconel 690传热管爆破压力为研究对象,开展了含缺陷传热管的高温爆破试验和传热管缺陷尺寸的涡流检验试验,基于正态分布建立了包含不确定度的传热管爆破压力预测模型以及缺陷深度预测模型,并采用直接累加和简化统计方法计算了包含不确定性的传热管爆破压力。结果显示,采用直接累积法同时计入材料性能、爆破压力预测模型、涡流检验的第95百分位最坏情况,可得到较保守的传热管爆破压力预测值。采用简化统计法计入材料性能、爆破压力预测模型、涡流检验的不确定性,可有效降低直接累积误差带来的过保守问题。

     

  • 图  1  流变应力的正态分布标准化和正态离差

    Figure  1.  Standard Normal Distribution and Normal Deviation of Flow Stress

    图  2  含缺陷传热管试样示意图 mm

    Figure  2.  Tube Sample with Defects

    图  3  爆破试验结果

    Figure  3.  Burst Test Results

    图  4  爆破压力预测结果与爆破试验结果对比

    Figure  4.  Burst Pressure Prediction Results versus Burst Test Results

    图  5  爆破压力预测误差分布

    Figure  5.  Error Distribution of Burst Pressure Prediction

    图  6  微振磨损类缺陷涡流检验结果

    Figure  6.  Eddy Current Testing Results of Fretting Wear Defects

    图  7  微振磨损缺陷涡流检验误差

    Figure  7.  Eddy Current Testing Error of Fretting Wear Defects

    图  8  微振磨损涡流检验的线性回归

    Figure  8.  Linear Regression of Eddy Current Testing of Fretting Wear

    图  9  微振磨损涡流检验的回归误差

    Figure  9.  Regression Error of Eddy Current Testing of Fretting Wear

    图  10  不同方法预测的含缺陷传热管爆破压力

    Figure  10.  Predicted Burst Pressure of Tubes with Defects by Different Methods

  • [1] 陈斯琪,张振兴. 蒸汽发生器传热管微振磨损理论研究[C]//中国核科学技术进展报告(第五卷)——中国核学会2017年学术年会论文集第7册(计算物理分卷、核物理分卷、粒子加速器分卷、核聚变与等离子体物理分卷、脉冲功率技术及其应用分卷、核工程力学分卷). 威海: 中国核学会,2017: 362-366.
    [2] 丁训慎. 蒸汽发生器传热管的降质及对其完整性的评估[J]. 核安全,2009(2): 37-42. doi: 10.3969/j.issn.1672-5360.2009.02.008
    [3] AYODEJI A, LIU Y K. PWR heat exchanger tube defects: trends, signatures and diagnostic techniques[J]. Progress in Nuclear Energy, 2019, 112: 171-184. doi: 10.1016/j.pnucene.2018.12.017
    [4] 李志强. 核电站蒸发器传热管安全评定方法的研究[D]. 上海: 华东理工大学,2011.
    [5] 惠虎,李培宁,唐毅,等. 含缺陷Inconel 690蒸汽发生器传热管的强度及堵管准则研究[J]. 原子能科学技术,2008, 42(S2): 634-640.
    [6] HUANG S, HUI H, PENG Z Z. Probabilistic structural integrity assessment for Inconel690 alloy steam generator tube with volume defect[J]. Nuclear Engineering and Design, 2021, 371: 110949. doi: 10.1016/j.nucengdes.2020.110949
    [7] SHUAI Y, SHUAI J, XU K. Probabilistic analysis of corroded pipelines based on a new failure pressure model[J]. Engineering Failure Analysis, 2017, 81: 216-233. doi: 10.1016/j.engfailanal.2017.06.050
    [8] HOSEYNI S M, DI MAIO F, ZIO E. Condition-based probabilistic safety assessment for maintenance decision making regarding a nuclear power plant steam generator undergoing multiple degradation mechanisms[J]. Reliability Engineering & System Safety, 2019, 191: 106583.
    [9] PALENCIA O G, TEIXEIRA A P, GUEDES SOARES C. Safety of pipelines subjected to deterioration processes modeled through dynamic Bayesian networks[J]. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141(1): 011602. doi: 10.1115/1.4040573
    [10] KIM H, KIM J T, HEO G. Prognostics for integrity of steam generator tubes using the general path model[J]. Nuclear Engineering and Technology, 2018, 50(1): 88-96. doi: 10.1016/j.net.2017.10.006
    [11] BHARDWAJ U, TEIXEIRA A P, GUEDES SOARES C. Uncertainty quantification of burst pressure models of corroded pipelines[J]. International Journal of Pressure Vessels and Piping, 2020, 188: 104208. doi: 10.1016/j.ijpvp.2020.104208
  • 加载中
图(10)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 修回日期:  2024-07-24
  • 刊出日期:  2024-12-17

目录

    /

    返回文章
    返回