Research on Optimization Control of Nuclear Power Plant Coordination System Based on ESO-MPC
-
摘要: 核岛与常规岛的调节特性具有较大差异,需要协调核岛与常规岛进行同步控制才能取得较好的控制效果,研究协调控制系统的优化控制策略具有重要意义。本文针对核电厂堆机协调控制系统容易出现扰动的现象,提出了一种基于扩张状态观测器(ESO)的模型预测控制(MPC)算法。所提出的方法通过使用ESO来精确估计外部干扰,然后将扰动估计值整合到MPC的滚动优化过程中,实现预测模型的自适应校正,从而得出所需的优化控制率。在仿真试验中,本文所提算法与比例积分微分控制和多变量模型预测控制器的效果进行了对比,结果显示,本文所提算法具有较好的表现效果。在机组负荷设定值扰动的场景中,本文所提算法的主蒸汽压力与机组负荷均方误差分别为0.06和0.02,明显优于其他两种算法。本文所提算法能够使得核电机组协调控制系统在存在外部干扰情况下实现精确的控制性能。
-
关键词:
- 核电机组 /
- 协调控制 /
- 模型预测控制(MPC) /
- 扩张状态观测器(ESO) /
- 扰动误差
Abstract: The regulation characteristics of nuclear island and conventional island are quite different, so it is necessary to coordinate the synchronous control of nuclear island and conventional island to achieve better control effect. It is of great significance to study the optimal control strategy of coordinated control system. In this paper, a model predictive control (MPC) algorithm based on extended state observer (ESO) is proposed to solve the problem that the coordinated control system of nuclear power plant is prone to disturbance. The proposed method accurately estimates the external disturbance by using ESO, and then integrates the disturbance estimation value into the rolling optimization process of MPC to realize the adaptive correction of the prediction model, thereby obtaining the required optimization control rate. In the simulation experiment, the algorithm proposed in this paper was compared with the performance of proportional integral differential control and multivariable model predictive controller, and the results showed that the algorithm proposed in this paper had good performance. In the scenario of unit load setting disturbance, the mean square error of main steam pressure and unit load by the proposed algorithm is 0.06 and 0.02 respectively, which is significantly better than the other two algorithms. The algorithm proposed in this paper can enable the coordinated control system of nuclear power units to achieve precise control performance in the presence of external disturbances. -
表 1 控制效果分析
Table 1. Control Effect Analysis
算法 工况 1 工况 2 工况 3 MSE(Ne) MSE(ps) MSE(Ne) MSE(ps) MSE(Ne) MSE(ps) PID 0.52 21.05 8.61 310.16 1.1×10−4 2.5×10−3 MPC 1.24 3.35 26.55 305.58 7.5×10−5 6.8×10−4 ESO-MPC 0.02 0.06 0.07 277.40 1.5×10−8 5.1×10−6 -
[1] 杜祥琬,叶奇蓁,徐銤,等. 核能技术方向研究及发展路线图[J]. 中国工程科学,2018, 20(3): 17-24. [2] 郑洁,余凡,朱军民,等. 海洋核动力装备国内外发展现况与前景展望[J]. 中国工程科学,2023, 25(3): 62-73. [3] 陈智,廖龙涛,张英,等. ACP100S浮动核电站核蒸汽供应系统控制系统分析与仿真研究[J]. 南华大学学报(自然科学版),2018, 32(6): 9-14. [4] 刘同先,李庆,王晨琳,等. Mode-C运行与控制模式设计技术研究[J]. 原子能科学技术,2021, 55(1): 121-127. doi: 10.7538/yzk.2020.youxian.0085 [5] 席原,刘景宾. 单元机组协调控制系统研究进展[J]. 工业仪表与自动化装置,2011(5): 10-16,101. doi: 10.3969/j.issn.1000-0682.2011.05.003 [6] ELIASI H, MENHAJ M B, DAVILU H. Robust nonlinear model predictive control for nuclear power plants in load following operations with bounded xenon oscillations[J]. Nuclear Engineering and Design, 2011, 241(2): 533-543. doi: 10.1016/j.nucengdes.2010.12.004 [7] 苏杰. 核动力装置非线性模型预测协调控制仿真研究[J]. 核科学与工程,2011, 31(2): 104-110. [8] 张伟,丁宗华,夏国清,等. 协调控制技术在核动力系统中的应用研究[J]. 核科学与工程,2006, 26(4): 337-342. doi: 10.3321/j.issn:0258-0918.2006.04.010 [9] 成守宇,彭敏俊,刘新凯,等. 基于数字化仪控技术的核动力装置协调控制器的设计[J]. 原子能科学技术,2014, 48(S1): 576-581. [10] ZHAO Y X, DU X, XIA G L, et al. A novel coordinated control for integrated pressurized water reactor[J]. Annals of Nuclear Energy, 2015, 85: 1029-1034. doi: 10.1016/j.anucene.2015.07.022 [11] 钱虹,金蔚霄. 基于多模型动态矩阵预测的冷却剂平均温度控制[J]. 热力发电,2015, 44(11): 98-103,108. doi: 10.3969/j.issn.1002-3364.2015.11.098 [12] 钱虹,房振鲁,金蔚霄,等. 核电厂反应堆冷却剂平均温度预测控制及仿真研究[J]. 核动力工程,2016, 37(2): 91-96. [13] 邓志光,青先国,吴茜,等. ALSTM-GPC在核电厂协调控制系统中的应用[J]. 核动力工程,2021, 42(S2): 41-47. [14] 李雅君. 单堆双机核动力装置建模与控制方法研究[D]. 南京: 东南大学,2020. [15] 王岱鹏. 动态矩阵控制在核动力系统堆机协调中的应用研究[D]. 保定: 华北电力大学,2022. [16] DONG Z, LI B W, HUANG X J, et al. Power-pressure coordinated control of modular high temperature gas-cooled reactors[J]. Energy, 2022, 252: 124042. doi: 10.1016/j.energy.2022.124042 [17] CUI C C, ZHANG J L, SHEN J. System-level modeling, analysis and coordinated control design for the pressurized water reactor nuclear power system[J]. Energy, 2023, 283: 128472. doi: 10.1016/j.energy.2023.128472 [18] WANG L N, CHEN C Q, CHEN L K, et al. A coordinated control methodology for small pressurized water reactor with steam dump control system[J]. Energy, 2023, 282: 129008. doi: 10.1016/j.energy.2023.129008 [19] CASTELLETTI A, FICCHÌ A, COMINOLA A, et al. Model predictive control of water resources systems: a review and research agenda[J]. Annual Reviews in Control, 2023, 55: 442-465. doi: 10.1016/j.arcontrol.2023.03.013 [20] LI P, TONG X S, JIN W T, et al. Observer based model predictive current control of distorted grid connected single phase rectifier without AC voltage sensor[J]. Control Engineering Practice, 2023, 138: 105589. doi: 10.1016/j.conengprac.2023.105589 [21] 杨志军,高忠义,王丽君,等. 面向刚柔耦合定位平台的模型预测控制算法[J]. 吉林大学学报(工学版),2022, 52(12): 2806-2815. [22] CHEN C, PAN L, SUN L, et al. Generalized ESO based stable predictive tracking control for micro gas turbine cogeneration system[J]. Journal of the Franklin Institute, 2022, 359(11): 5148-5173. doi: 10.1016/j.jfranklin.2022.05.051 [23] HUI J W, LEE Y K, YUAN J Q. ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics[J]. Energy, 2023, 271: 127058. doi: 10.1016/j.energy.2023.127058