Research on Multi-objective Optimization of Parameters of Small Pressurized Water Reactor Nuclear Steam Supply Control System
-
摘要: 核反应堆常规的比例积分(PI)控制器参数整定方法过程繁琐复杂、人为经验依赖性强,难以实现反应堆中多个PI控制器参数的协同优化。为解决这一问题,建立小型压水堆核蒸汽供应控制系统,以反应堆冷却剂平均温度与蒸汽压力控制器参数为优化目标,采用带精英策略的非支配排序遗传算法(NSGA-II)实现核蒸汽供应控制系统的参数优化。结果表明,优化后的控制系统有效减少了被控对象的超调量与响应时间,提高了控制系统的控制性能,同时减少了对人为经验的依赖,实现了参数整定过程的智能化。
-
关键词:
- 小型压水堆核蒸汽供应系统 /
- PI控制器参数 /
- 多目标协同优化 /
- 非支配排序遗传算法(NSGA-II)
Abstract: In nuclear reactors, the conventional PI controller parameter tuning method is cumbersome and complex, with strong dependence on human experience, which makes it difficult to achieve the simultaneous co-optimization of multiple PI controller parameters in the reactor. To study this problem, a small pressurised water reactor nuclear steam supply control system is established with the reactor coolant average temperature and steam pressure controller parameters as the optimization objectives, and a Non Dominated Sorting Genetic Algorithm-II (NSGA-II) is used to achieve the parameter optimization of the nuclear steam supply control system. The results show that the optimized control system effectively reduces the overshoot and response time of the controlled objects, improves the control performance of the control system, and at the same time lessens the dependence on human experience and achieves the intelligence of the parameter tuning process. -
表 1 PI控制器参数整定结果
Table 1. Tuning Results of PI Controller Parameters
PI参数整定方式 kp,T ki,T kp,P ki,P 经验整定法 4.5391 0.0087 0.0045 0.0042 多目标协同优化方法 4.6388 0.0040 0.0052 0.0050 表 2 100%FP-50%FP线性负荷变化主要参数指标(负荷下降速率为5%FP/min)
Table 2. Main Parameter Indexes of Linear Load Change Transient of 100%FP-50%FP (The Load Decrease Rate is 5%FP/min)
主要参数 PI参数整定方式 超调量/% 响应时间/s 调节时间/s 冷却剂平均温度 经验整定法 1.474 638.051 2646.0 多目标协同优化方法 0.512 318.053 2243.8 蒸汽压力 经验整定法 4.673 492.580 886.636 多目标协同优化方法 2.910 603.137 983.676 表 3 100%FP-30%FP阶跃负荷变化主要参数指标
Table 3. Main Parameter Indexes of Step Load Change Transient of 100%FP-30%FP
主要参数 PI参数整定方式 超调量/% 响应时间/s 调节时间/s 冷却剂平均温度 经验整定法 3.353 251.946 557.876 多目标协同优化方法 1.743 189.934 478.068 蒸汽压力 经验整定法 27.809 140.161 426.670 多目标协同优化方法 19.421 129.934 570.807 -
[1] 曹桦松,孙培伟. 基于主元分析的小型压水堆故障检测和辨识方法研究[J]. 核动力工程,2022, 43(1): 148-155. [2] 陈智,廖龙涛,张英,等. ACP100S浮动核电站核蒸汽供应系统控制系统分析与仿真研究[J]. 南华大学学报(自然科学版),2018, 32(6): 9-14. [3] WANG P F, YAN X, ZHAO F Y. Multi-objective optimization of control parameters for a pressurized water reactor pressurizer using a genetic algorithm[J]. Annals of Nuclear Energy, 2019, 124: 9-20. doi: 10.1016/j.anucene.2018.09.026 [4] HUI T Y, ZENG W J, YU T. Core power control of the ADS based on genetic algorithm tuning PID controller[J]. Nuclear Engineering and Design, 2020, 370: 110835. doi: 10.1016/j.nucengdes.2020.110835 [5] 张登,蔡宛睿,谢成龙,等. 核电数字化控制系统PID参数自动寻优软件研制[J]. 核动力工程,2020, 41(S1): 77-81. [6] 黄轲,王琳,肖凯,等. 基于粒子群算法的反应堆功率调节系统优化研究[J]. 科技视界,2019(10): 64-66,70. [7] 郑艳秋,张英,尤恺,等. 基于相角裕度的PID控制器自整定改进算法的研究[J]. 核动力工程,2020, 41(S2): 108-113. [8] WANG P F, JIANG Q F, ZHANG J X, et al. A fuzzy fault accommodation method for nuclear power plants under actuator stuck faults[J]. Annals of Nuclear Energy, 2022, 165: 108674. [9] 闫寿军. 小型压水堆系统仿真与动态特性研究[D]. 西安: 西安交通大学,2017.闫寿军. 小型压水堆系统仿真与动态特性研究[D]. 西安: 西安交通大学, 2017. [10] CHEN L K, CHEN C Q, WANG L N, et al. Uncertainty quantification of once-through steam generator for nuclear steam supply system using latin hypercube sampling method[J]. Nuclear Engineering and Technology, 2023, 55(7): 2395-2406. [11] 梁乐华,王雪鉴,曾文杰,等. 小型压水堆螺旋管直流蒸汽发生器参数不确定性量化研究[J]. 核动力工程,2023, 44(3): 152-159. [12] WANG L N, CHEN C Q, CHEN L K, et al. A coordinated control methodology for small pressurized water reactor with steam dump control system[J]. Energy, 2023, 282: 129008. [13] 徐峰, 李东海, 薛亚丽. 基于ITAE指标的PID参数整定方法比较研究[J]. 中国电机工程学报,2003(08): 207-211. doi: 10.3321/j.issn:0258-8013.2003.08.042