高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一阶中子输运方程的杂交间断有限元方法研究

孙启政 刘晓晶 张滕飞

孙启政, 刘晓晶, 张滕飞. 基于一阶中子输运方程的杂交间断有限元方法研究[J]. 核动力工程, 2024, 45(6): 248-253. doi: 10.13832/j.jnpe.2024.06.0248
引用本文: 孙启政, 刘晓晶, 张滕飞. 基于一阶中子输运方程的杂交间断有限元方法研究[J]. 核动力工程, 2024, 45(6): 248-253. doi: 10.13832/j.jnpe.2024.06.0248
Sun Qizheng, Liu Xiaojing, Zhang Tengfei. Investigation on Hybrid Discontinuous Galerkin Method Based on First-Order Neutron Transport Equation[J]. Nuclear Power Engineering, 2024, 45(6): 248-253. doi: 10.13832/j.jnpe.2024.06.0248
Citation: Sun Qizheng, Liu Xiaojing, Zhang Tengfei. Investigation on Hybrid Discontinuous Galerkin Method Based on First-Order Neutron Transport Equation[J]. Nuclear Power Engineering, 2024, 45(6): 248-253. doi: 10.13832/j.jnpe.2024.06.0248

基于一阶中子输运方程的杂交间断有限元方法研究

doi: 10.13832/j.jnpe.2024.06.0248
基金项目: 国家自然科学基金(12175138、U20B2011)
详细信息
    作者简介:

    孙启政(1997—),男,博士研究生,现主要从事中子输运算法相关研究,E-mail: qizhengsun@sjtu.edu.cn

    通讯作者:

    张滕飞,E-mail: zhangtengfei@sjtu.edu.cn

  • 中图分类号: TL329

Investigation on Hybrid Discontinuous Galerkin Method Based on First-Order Neutron Transport Equation

  • 摘要: 复杂构型先进反应堆的不断提出对中子学数值方法提出了更高的要求,为实现对复杂问题的准确、高效模拟,本文提出一种基于一阶双曲型中子输运方程(NTE)的杂交间断有限元(HDG)方法。该方法在角度上采用了离散纵标(SN)的格式将原始的方程解耦为各个角度方向的相互独立的方程;在空间上采用迎风格式对方程进行离散,整个问题的全局矩阵耦合系统呈现分块下三角的形式,更加适合网格数目较多的复杂几何非均匀中子输运问题场景。选取了TAKEDA1基准题与非均匀组件问题作为分析对象,对所提出的HDG方法的计算性能进行了分析。数值结果表明,HDG在上述算例中均实现稳定收敛,有效增殖系数keff与参考解的最大误差为108pcm(1pcm=10−5)。此外,与传统二阶偶对称形式方法相比,一阶HDG方法空间扫描更为高效,在上述算例中实现了约2倍的加速比。因此,本文研究的HDG方法能够为复杂构型反应堆问题提供可选的解决方案。

     

  • 图  1  一阶HDG方法在TAKEDA1问题中的注量率分布

    Figure  1.  Flux Distribution of First-order HDG Method for the TAKEDA1 Problem

    图  2  TAKEDA1基准题中一阶与二阶方法计算时间对比

    Figure  2.  Comparison of Execution Time between First-order and Second-Order Methods for the TAKEDA1 Benchmark

    图  3  HDG方法在PWR组件问题中的功率与误差分布

    Figure  3.  Power Distribution and Relative Error Distribution of HDG Method for PWR-Assembly Problem

    表  1  不同工况下的keff误差及计算时间对比

    Table  1.   Comparison of keff Error and Calculation Time under Different Test Cases

    方法 空间展开阶数 误差/pcm 总时间/s
    二阶 1st/0th 1491 83.5
    2nd/1st 33 191.0
    4th/2nd −10 649.9
    6th/4nd −13 4099.1
    一阶 1st/0th −2429 47.4
    2nd/1st 14 100.1
    4th/2nd −18 279.1
    6th/4nd −18 1046.6
    下载: 导出CSV
  • [1] XIAO W, LI X Y, LI P J, et al. High-fidelity multi-physics coupling study on advanced heat pipe reactor[J]. Computer Physics Communications, 2022, 270: 108152. doi: 10.1016/j.cpc.2021.108152
    [2] STERBENTZ J W, WERNER J E, MCKELLAR M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report: INL/EXT-16-40741[R]. Idaho Falls: Idaho National Laboratory, 2017.
    [3] JARETEG K, VINAI P, DEMAZIÈRE C. Fine-mesh deterministic modeling of PWR fuel assemblies: Proof-of-principle of coupled neutronic/thermal-hydraulic calculations[J]. Annals of Nuclear Energy, 2014, 68: 247-256. doi: 10.1016/j.anucene.2013.12.019
    [4] FIORINA C, HURSIN M, PAUTZ A. Extension of the GeN-Foam neutronic solver to SP3 analysis and application to the CROCUS experimental reactor[J]. Annals of Nuclear Energy, 2017, 101: 419-428. doi: 10.1016/j.anucene.2016.11.042
    [5] CHEN J, LIU Z Y, ZHAO C, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
    [6] ZHAO C, PENG X J, ZHANG H B, et al. A new numerical nuclear reactor neutronics code SHARK[J]. Frontiers in Energy Research, 2021, 9: 784247. doi: 10.3389/fenrg.2021.784247
    [7] PEIRÓ J, SHERWIN S. Finite difference, finite element and finite volume methods for partial differential equations[M]//YIP S. Handbook of Materials Modeling. Dordrecht: Springer, 2005: 2415-2446.
    [8] EKLUND M D, DUPONT M, CARACAPPA P F, et al. Neutronics simulations of the RPI walthousen reactor critical facility (RCF) using proteus-SN[J]. Transactions of the American Nuclear Society, 2017, 117: 114-115.
    [9] WANG Y Q, SCHUNERT S, ORTENSI J, et al. Rattlesnake: a MOOSE-based multiphysics multischeme radiation transport application[J]. Nuclear Technology, 2021, 207(7): 1047-1072. doi: 10.1080/00295450.2020.1843348
    [10] PRINCE Z M, HANOPHY J T, LABOURÉ V M, et al. Neutron transport methods for multiphysics heterogeneous reactor core simulation in Griffin[J]. Annals of Nuclear Energy, 2024, 200: 110365. doi: 10.1016/j.anucene.2024.110365
    [11] GIACOMINI M, SEVILLA R, HUERTA A. HDGlab: an open-source implementation of the hybridisable discontinuous Galerkin method in MATLAB[J]. Archives of Computational Methods in Engineering, 2021, 28(3): 1941-1986. doi: 10.1007/s11831-020-09502-5
    [12] COCKBURN B, QIU W F, SHI K. Conditions for superconvergence of HDG methods for second-order elliptic problems[J]. Mathematics of Computation, 2012, 81(279): 1327-1353. doi: 10.1090/S0025-5718-2011-02550-0
    [13] BUI-THANH T. From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations[J]. Journal of Computational Physics, 2015, 295: 114-146. doi: 10.1016/j.jcp.2015.04.009
    [14] ZHANG T F, LI Z P. Variational nodal methods for neutron transport: 40 years in review[J]. Nuclear Engineering and Technology, 2022, 54(9): 3181-3204. doi: 10.1016/j.net.2022.04.012
    [15] SUN Q Z, XIAO W, LI X Y, et al. A variational nodal formulation for multi-dimensional unstructured neutron diffusion problems[J]. Nuclear Engineering and Technology, 2023, 55(6): 2172-2194. doi: 10.1016/j.net.2023.02.021
    [16] DIJOUX L, FONTAINE V, MARA T A. A projective hybridizable discontinuous Galerkin mixed method for second-order diffusion problems[J]. Applied Mathematical Modelling, 2019, 75: 663-677. doi: 10.1016/j.apm.2019.05.054
    [17] CARTIER J, PEYBERNES M. Mixed variational formulation and mixed-hybrid discretization of the transport equation[J]. Transport Theory and Statistical Physics, 2010, 39(1): 1-46. doi: 10.1080/00411450.2010.529630
    [18] AZMY Y, SARTORI E. Nuclear computational science: a century in review[M]. Dordrecht: Springer, 2010, 106-112.
    [19] LEWIS E E, CARRICO C B, PALMIOTTI G. Variational nodal formulation for the spherical harmonics equations[J]. Nuclear Science and Engineering, 1996, 122(2): 194-203. doi: 10.13182/NSE96-1
    [20] SMITH M A, LEWIS E E, PALMIOTTI G, et al. A first-order spherical harmonics formulation compatible with the variational nodal method[C]//Proceedings of the Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments. Argonne: Argonne National Lab. , 2004: 25-29.
    [21] Smith M A, Lewis E E, Palmiotti G, et al. A first-order integral method developed for the VARIANT code[C]. PHYSOR-2006-American Nuclear Society's Topical Meeting on Reactor Physics. 2006.
    [22] ZHANG T F, XIAO W, YIN H, et al. VITAS: a multi-purpose simulation code for the solution of neutron transport problems based on variational nodal methods[J]. Annals of Nuclear Energy, 2022, 178: 109335. doi: 10.1016/j.anucene.2022.109335
    [23] 张滕飞,殷晗,孙启政,等. 通用型中子输运程序VITAS应用研究[J]. 核动力工程,2023, 44(2): 15-23.
    [24] TAKEDA T, IKEDA H. 3-D neutron transport benchmarks[J]. Journal of Nuclear Science and Technology, 1991, 28(7): 656-669. doi: 10.1080/18811248.1991.9731408
    [25] SUN Q Z, LIU X J, CHAI X, et al. A discrete-ordinates variational nodal method for heterogeneous neutron Boltzmann transport problems[J]. Computers & Mathematics with Applications, 2024, 170: 142-160.
    [26] SMITH M A, LEWIS E E, NA B C. Benchmark on DETERMINISTIC 3-D MOX fuel assembly transport calculations without spatial homogenization[J]. Progress in Nuclear Energy, 2006, 48(5): 383-393. doi: 10.1016/j.pnucene.2006.01.002
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-07
  • 修回日期:  2024-08-21
  • 刊出日期:  2024-12-17

目录

    /

    返回文章
    返回