Experimental Study on the Impact of Heat Pipe Failure on High-Temperature Heat Pipe Bundles and Matrix
-
摘要: 为了验证小型热管反应堆的可行性,本研究设计了一种高温热管管束的实验装置。该实验装置通过拔出热管模拟热管失效,由电加热棒模拟堆芯燃料棒,用以探究热管失效对热管管束、燃料棒及堆芯基体的影响。实验发现:热管失效带来的最直接影响是堆芯基体局部温度突升,在功率4.2 kW下,单管失效时附近基体温度平均上升约70℃,双管失效时附近基体温度平均上升约120℃;单管失效对其余正常热管影响较小,正常热管蒸发段平均温升15℃,双管失效时,与失效热管相邻的燃料元件平均温升约66℃。本文获得的热管失效下的高温热管管束实验数据可为热管堆的建模仿真提供数据支持。Abstract: In order to verify the feasibility of small heat pipe reactor, an experimental device of high temperature heat pipe bundle is designed in this study. The experimental device simulates the failure of heat pipe by pulling out the heat pipe, and simulates the core fuel rod by electric heating rod to explore the influence of heat pipe failure on heat pipe bundle, fuel rod and core matrix. It is found that the most direct impact of heat pipe failure is a sudden local temperature rise in the nearby matrix. Under the power of 4.2 kW, the average increase of matrix temperature in the vicinity of single heat pipe failure is about 70℃, and the average increase of matrix temperature in the vicinity of double heat pipe failure is about 120℃. The failure of a single heat pipe has a minor impact on the remaining normal heat pipes, with an average temperature rise of 15℃ in the evaporation section of the normal heat pipes. The average temperature increase of fuel element in the vicinity of double heat pipe failure is about 66℃. The experimental data of high temperature heat pipe bundle under heat pipe failure obtained in this study can provide data support for the modeling and simulation of heat pipe reactor.
-
Key words:
- Heat pipe reactor /
- Heat pipe bundle /
- Heat pipe failure /
- Transient analysis
-
表 1 堆芯模拟基体具体参数
Table 1. Parameters of the the Matrix for Core Simulation
参数名 参数值 加热棒数量 30 加热棒直径/mm 17.5 热管数量 7 热管直径/mm 20 棒间距/mm 23.75 失效热管数量 1~2 基体高度/mm 300 基体内切圆直径/mm 151 表 2 高温热管具体参数
Table 2. Parameters of High-temperature Heat Pipes
参数名 参数值 工质质量/g 28.5 蒸发段长度/mm 300 绝热段长度/mm 400 冷凝段长度/mm 300 丝网目数 400 丝网厚度/mm 2 热管外直径/mm 20 热管管壁壁厚/mm 2 表 3 高温热管管束失效实验工况
Table 3. Experimental Conditions of High-temperature Heat Pipe Bundle for Heat Pipe Failure
工况 加热功率/kW 冷却条件 稳态实验 正常运行 3.5/4.2/6.0 水冷 单管失效 3.5/4.2/6.0 水冷 双管失效 3.5/4.2/6.0 水冷 启动实验 正常启动 3.5/4.2/6.0 水冷 单管失效启动 4.2 水冷 瞬态实验 正常运行-单管失效-
双管失效-急停3.5/4.2/6.0 水冷 正常运行-冷却
水失流-急停4.2 水冷-冷却水停流 重复性实验 瞬态单管失效 4.2 水冷 瞬态双管失效 4.2 水冷 -
[1] 田智星,王成龙,黄金露,等. 热管冷却反应堆中高温钠热管传热极限实验研究[C]//中国核科学技术进展报告(第七卷)——中国核学会2021年学术年会论文集第2册(核能动力分卷). 烟台: 中国核学会,2021: 6. [2] 袁乐齐,吴和鑫,苟军利,等. 新型兆瓦级紧凑核动力装置的非能动余热排出系统设计分析[J]. 核技术,2024, 47(1): 010602. [3] 张俊达,刘晓晶,熊进标,等. 基于神经网络的热管反应堆多物理场耦合快速预测[J]. 原子能科学技术,2024, 58(6): 1218-1225. [4] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8, doi: 10.13832/j.jnpe.2019.04.0001. [5] 李潘潇,张智鹏,王成龙,等. 多用途热管堆原型样机概念设计及堆芯物理分析[J]. 核动力工程,2023, 44(S2): 133-139, doi: 10.13832/j.jnpe.2023.S2.0133. [6] JIAO G H, XIA G L, ZHU H S, et al. Thermal-mechanical coupling characteristics and heat pipe failure analysis of heat pipe cooled space reactor[J]. Annals of Nuclear Energy, 2023, 192: 110025. doi: 10.1016/j.anucene.2023.110025 [7] UMAIR A, KORESHI Z U, SHEIKH S R, et al. A study of criticality and thermal loading in a conceptual micronuclear heat pipe reactor for space applications[J]. Nuclear Technology and Radiation Protection, 2020, 35(3): 208-215. doi: 10.2298/NTRP2003208A [8] 汪镇澜,苟军利,徐世浩,等. 新型兆瓦级热管堆热管失效事故分析[J]. 核技术,2022, 45(11): 110604. doi: 10.11889/j.0253-3219.2022.hjs.45.110604 [9] 韩冶,杨思远,文青龙,等. 热管堆单根热管失效事故瞬态数值分析研究[J]. 原子能科学技术,2024, 58(9): 1920-1929.