Design and Experimental Study of High Temperature Flowing Liquid Metal Corrosion Device
-
摘要: 针对核聚变装置中液态锂第一壁及液态金属包层部件中高温流动液态金属对结构材料的相容性问题,尤其是腐蚀性问题,设计一种高温流动液态金属腐蚀实验装置,采用ANSYS软件对液态金属流动与传热特性进行三维数值模拟分析,模拟和测试结果表明该实验装置能够实现第一壁和包层结构中液态锂温度(300~600℃)和流速(<0.2 m/s)的工况,具备开展高温动态液态锂与结构材料腐蚀特性研究的条件。同时,初步开展相对流速0.2 m/s、550℃液态锂对国产低活化铁素体/马氏体钢(9Cr-0.4Mo-0.3Y钢)长达1000 h的腐蚀特性研究。实验结果表明,9Cr-0.4Mo-0.3Y钢发生了明显的晶界腐蚀和孔蚀,样件表面硬度因不均匀腐蚀导致不同程度的降低。X射线衍射分析结果表明,腐蚀后的9Cr-0.4Mo-0.3Y钢表面并未发生相变,但因304不锈钢腐蚀罐体中Ni元素的溶解迁移导致其表面出现03-1049#FeNi峰。Abstract: Aiming at the compatibility problem of high-temperature flowing liquid metal on structural materials, especially the corrosion problem, in the first wall of liquid lithium and liquid metal blanket components in the nuclear fusion reactor, a high-temperature flowing liquid metal corrosion experimental device is designed, and three-dimensional numerical simulation and analysis of the flow and heat transfer characteristics of the liquid metal are carried out by using the software ANSYS. The simulation and test results show that the experimental device can realize the conditions of liquid lithium temperature (300-600℃) and flow rate (< 0.2 m/s) in the first wall and blanket structure, and is qualified to study the corrosion characteristics of dynamic liquid lithium and structural materials at high temperature. Meanwhile, the corrosion behavior of domestically produced low-activation ferrite/martensite steel (9Cr-0.4Mo-0.3Y steel) in 0.2 m/s liquid Li at 550℃ for 1000 hours (h) is preliminarily studied. The results show that 9Cr-0.4Mo-0.3Y steel experiences obvious intergranular corrosion and pitting corrosion, and the surface hardness of the sample is reduced to different degrees due to non-uniform corrosion. The XRD analysis reveals that there is no phase transformation on the corroded surface of 9Cr-0.4Mo-0.3Y steel. The 03-1049#FeNi peak is detected on the sample' surface due to the dissolution and migration of Ni element from the 304 stainless steel vessel.
-
Key words:
- Corrosion device /
- Thermodynamic simulation /
- Liquid lithium /
- RAFM steel /
- Corrosion characteristics
-
表 1 模拟分析中工质的热物性
Table 1. Thermal Properties of Working Medium in Simulation Analysis
表 2 9Cr-0.4Mo-0.3Y钢成份及含量(质量百分比,%)
Table 2. Composition and Content of 9Cr-0.4Mo-0.3Y Steel
特征牌号 C Cr Si Mn W Mo V Ta Ti N Y 9Cr-0.4Mo-0.3Y 0.08~0.11 8.9~9.5 0.1~0.2 0.45~0.55 1.1~1.3 0.3~0.5 0.2~0.3 0.15~0.22 0.04~0.06 0.01~0.02 0.3 表 3 9Cr-0.4Mo-0.3Y钢腐蚀前后表面成份及含量变化(质量百分比,%)
Table 3. Surface Composition and Content Changes of 9Cr-0.4Mo-0.3Y Steel before and after Corrosion
样品状态 C Cr Si Mn W Mo Fe Ni 腐蚀前 0 9.4 0.2 0.45 1.3 0.6 86.7 0 腐蚀后 8.7 5.0 0.2 0.5 0.6 0 72.4 2.3 表 4 9Cr-0.4Mo-0.3Y钢腐蚀前后表面硬度变化
Table 4. Surface Hardness Changes of 9Cr-0.4Mo-0.3Y Steel before and after Corrosion
参数名 腐蚀前 腐蚀后 位点1 位点2 位点3 位点4 位点5 样件硬度值/HV 224.8 185.3 137.3 191.3 140.5 197.8 -
[1] 徐玉平,吕一鸣,周海山等. 核聚变堆包层结构材料研究进展及展望[J]. 材料导报,2018, 32(17): 2897-2906. doi: 10.11896/j.issn.1005-023X.2018.17.001 [2] LIAO H, WANG X, YANG G, ET AL. Recent progress of R&D activities on reduced activation ferritic/martensitic steel (CLF-1)[J]. Fusion Engineering and Design, 2019, 147: 111235. doi: 10.1016/j.fusengdes.2019.06.008 [3] LUO W, HUANG Q, LUO L, ET AL. Effect of minor addition of Ce on microstructure and LBE corrosion resistance for CLAM steel[J]. Corrosion Science, 2022, 209: 110796. doi: 10.1016/j.corsci.2022.110796 [4] HOSAKA T, KONDO M, SATO S, ET AL. Chemical compatibility of F82H and 316L in liquid metal heat transfer mediums Li, Na and NaK[J]. Journal of Nuclear Materials, 2022, 561: 153546. doi: 10.1016/j.jnucmat.2022.153546 [5] HERNÁNDEZ T, FERNÁNDEZ P. Corrosion susceptibility comparison of EUROFER steel in contact two lithium silicate breeders[J]. Fusion Engineering and Design, 2014, 89(7-8): 1436-1439. doi: 10.1016/j.fusengdes.2013.12.043 [6] GLASBRENNER H, KONYS J, VOß Z. Corrosion behaviour of low activation steels in flowing Pb–17Li[J]. Journal of nuclear materials, 2000, 281(2-3): 225-230. doi: 10.1016/S0022-3115(00)00186-0 [7] NAJAFI H. Tensile Flow Behavior of 9Cr–2WVTa Reduced-Activation Ferritic /Martensitic Steel[J]. Journal of Engineering Materials and Technology, 2016, 138(3): 031003. doi: 10.1115/1.4032560 [8] GRÄNING T, SRIDHARAN N. Benchmarking a 9Cr-2WVTa reduced activation ferritic martensitic steel fabricated via additive manufacturing[J]. Metals, 2022, 12(2): 342. doi: 10.3390/met12020342 [9] S. J. ZINKLE, J. L. BOUTARD, D. T. HOELZER, A. KIMURA, R. LINDAU, G. R. ODETTE, M. RIETH, L. Tan, H. Tanigawa, Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications, Nucl. Fusion 57 (2017) 92005. [10] S. J. ZINKLE, L. L. SNEAD. Designing radiation resistance in materials for fusion energy, Annu. Rev. Mater. Res. 44 (2014) 241e267. [11] HONG Z, ZHANG X, YAN Q, ET AL. A new method for preparing 9Cr-ODS steel using elemental yttrium and Fe2O3 oxygen carrier[J]. Journal of Alloys and Compounds, 2018, 770. [12] ZHANG D H, MENG X C, ZUO G Z, ET AL. Study of the corrosion characteristics of 304 and 316L stainless steel in the static liquid lithium[J]. Journal of Nuclear Materials, 2021, 553: 153032. doi: 10.1016/j.jnucmat.2021.153032 [13] TSISAR V, KONDO M, XU Q, ET AL. Effect of nitrogen on the corrosion behavior of RAFM JLF-1 steel in lithium[J]. J. Nucl. Mater., 2011, 417(1-3): 1205-1209. doi: 10.1016/j.jnucmat.2010.12.280 [14] DI GABRIELE F, AMORE S, SCAIOLA C, ET AL. Corrosion behaviour of 12Cr-ODS steel in molten lead[J]. Nuclear Engineering and Design, 2014, 280: 69-75. doi: 10.1016/j.nucengdes.2014.09.030 [15] KONYS J, KRAUSS W. Corrosion and precipitation effects in a forced-convection Pb–15.7 Li loop[J]. Journal of Nuclear Materials, 2013, 442(1-3): S576-S579. doi: 10.1016/j.jnucmat.2013.04.016 [16] KONDO M, MUROGA T, SAGARA A, ET AL. Flow accelerated corrosion and erosion–corrosion of RAFM steel in liquid breeders[J]. Fusion Engineering & Design, 2011, 86(9-11): 2500-2503. [17] 汪卫华,朱志强,李晋岭,等. 液态金属回路DRAGON-Ⅱ锂铅合金流动与传热三维数值模拟[J]. 核科学与工程,2010, 30(2): 166-171. [18] QI X, KONDO M, NAGASAKA T, ET AL. Corrosion characteristics of low activation ferritic steel, JLF-1, in liquid lithium in static and thermal convection conditions[J]. Fusion Engineering & Design, 2008, 83(10-12): 1477-1483. [19] BENAMATI G, FAZIO C, RICAPITO I. Mechanical and corrosion behaviour of EUROFER 97 steel exposed to Pb–17Li[J]. Journal of Nuclear Materials, 2002, 307: 1391-1395. [20] 甘祥来. Li-Pb及Fe-Li界面特性的原子模拟[D]. 长沙:湖南大学,2018. [21] MENG X, ZUO G, REN J, ET AL. Study of the corrosion behaviors of 304 austenite stainless steel specimens exposed to static liquid lithium at 600 K[J]. Journal of Nuclear Materials, 2016, 480: 25-31. doi: 10.1016/j.jnucmat.2016.07.061 [22] 刘斌. ANSYS Fluent 2020 综合应用案例详解[M]. 清华大学出版社,2021. [23] LYUBLINSKI I E, VERTKOV A V, EVTIKHIN V A. Application of lithium in systems of fusion reactors. 1. Physical and chemical properties of lithium[J]. Plasma Devices and Operations, 2009, 17(1): 42-72. doi: 10.1080/10519990802703277 [24] LYUBLINSKI I E, VERTKOV A V, EVTIKHIN V A. Application of lithium in systems of fusion reactors. 2. The issues of practical use of lithium in experimental facilities and fusion devices[J]. Plasma devices and operations, 2009, 17(4): 265-285. doi: 10.1080/10519990903172364 [25] 郄俊懋. 304不锈钢高温力学性能及热物理性能研究[D]. 内蒙古: 内蒙古科技大学,2014. [26] MENG X C, XU, C, ZUO, G. Z, ET AL. Corrosion characteristics of copper in static liquid lithium under high vacuum [J]. Journal of Nuclear Materials: Materials Aspects of Fission and Fusion, 2019, 513282-292. [27] 舒磊,曹智,夏文星. 316L 不锈钢在静态液态锂中的腐蚀行为研究[J]. 核聚变与等离子体物理,2017, 37: 336-341. [28] 孟献才. 聚变装置中相关材料在液态锂中的腐蚀特性研究[D]. 长沙:湖南大学,2018.