Study on Corrosion Behavior of High-corrosion Resistance AFAs in Supercritical Water
-
摘要: 为解决传统不锈钢在超临界水冷堆(SCWR)堆芯高温高压、强腐蚀性服役环境中不适用的问题,针对性地设计制备了新型含铝奥氏体不锈钢(AFAs),采用高压釜浸泡试验研究了其在600℃/25 MPa超临界水中的腐蚀行为。利用多种先进微观分析技术研究了AFAs在超临界水中腐蚀后试样表面氧化膜形貌、成分及结构特征,用以探究合金在超临界水中的耐腐蚀机制及氧化铝成膜行为。研究结果表明:AFAs在600℃超临界水中能形成连续的氧化铝膜从而具备优异的耐腐蚀性能,1000 h腐蚀增重量低于10 mg/dm2,优于文献报道的在相同条件下腐蚀的C276合金和310-ODS合金。该氧化铝膜与合金基体结合紧密无明显分界,能有效阻碍超临界水中氧化介质与合金基体的直接接触,抑制合金中Fe的外扩散,为合金提供优异的保护性。然而,AFAs中的Laves相会影响局部氧化铝膜的均匀性,导致外层MnCr2O4颗粒的形成。因此,AFAs需要在维持氧化铝连续成膜的同时严格控制Laves相含量,从而满足SCWR的应用需求。本文研究结果可为SCWR用含铝奥氏体不锈钢研发设计提供数据及理论支撑。
-
关键词:
- 超临界水冷堆(SCWR) /
- 含铝奥氏体不锈钢(AFAs) /
- 均匀腐蚀 /
- 氧化铝膜 /
- Laves相
Abstract: To address the inapplicability of traditional stainless steel in the high-temperature, high-pressure and highly corrosive service conditions of supercritical-water cooled reactor core, a novel alumina-forming austenitic stainless steels (AFAs) was designed and prepared, and its corrosion behavior in supercritical water at 600℃/25 MPa was studied by autoclave immersion test. The morphology, composition and structural characteristics of the oxide scale on the surface of AFAs after corrosion in supercritical water were studied by using a variety of advanced micro-analysis techniques to explore the corrosion resistance mechanism of the alloy in supercritical water and the scale-forming behavior of alumina. The results show that the AFAs offered excellent corrosion resistance by forming a continuous alumina scale in supercritical-water at 600℃, with a corrosion weight gain of less than 10 mg/dm2 after 1000 h of exposure, which is better than that of C276 and 310-ODS alloys corroded under the same conditions reported in the literature. The alumina scale is densely and tightly combined with the alloy matrix without obvious separations, effectively hindering the direct contact between the oxidizing media and the alloy matrix, and inhibiting the external diffusion of Fe in the alloy, thus providing excellent protection for the alloy. However, the Laves in the AFAs can affect the uniformity of the localized alumina scale, leading to the formation of MnCr2O4 particles. Therefore, AFAs need to maintain continuous formation of alumina scale while strictly controlling the Laves phase level to satisfy the requirements of supercritical water-cooled reactor applications. The results of this paper can provide data and theoretical support for the development and design of aluminum-forming austenitic stainless steels for supercritical water-cooled reactors. -
表 1 AFAs成分表
Table 1. Chemical Composition of AFAs
元素 Ni Cr Al Nb Cu Si Mn Mo C Fe 质量分数(理论)/% 26 19 2.5 1 1.5 1 2 4 0.08 余量 质量分数(实际)/% 25.63 19.50 2.21 0.82 1.59 1.26 2.00 3.40 0.08 余量 表 2 3种合金在超临界水中腐蚀动力学拟合结果
Table 2. Fitting Results of Corrosion Kinetics in Supercritical-water for Three Alloys
合金材料 k n R2 C276 1.54 0.46 0.98 310-ODS 8.10 0.18 0.97 AFAs 0.20 0.54 0.99 位置 元素质量分数/% O Al Cr Fe Ni Mn Si Cu Nb Mo 1 29.36 6.51 31.30 15.58 8.34 6.19 0.44 0.41 0.62 1.27 2 25.86 15.10 19.69 19.38 6.73 7.59 1.04 0.60 0.48 3.51 3 16.35 5.48 19.49 31.46 17.39 4.13 0.90 0.93 0.73 3.14 4 25.70 3.96 32.85 19.32 9.62 4.80 0.82 0.47 0.50 1.96 表 4 AFAs在600℃超临界水中发生的氧化反应及对应反应的形成能
Table 4. Reactions and Corresponding Gibbs Free Energy of AFAs Exposed in 600℃ Supercritical-water
反应 形成能ΔGf/(kJ·mol−1) $ 3\mathrm{F}\mathrm{e}+2{\mathrm{O}}_{2}\to {\mathrm{F}\mathrm{e}}_{3}{\mathrm{O}}_{4} $ $ -202.9 $ $ 2\mathrm{F}\mathrm{e}+3/2{\mathrm{O}}_{2}\to {\mathrm{F}\mathrm{e}}_{2}{\mathrm{O}}_{3} $ $ -126.6 $ $ \mathrm{N}\mathrm{i}+1/2{\mathrm{O}}_{2}\to \mathrm{N}\mathrm{i}\mathrm{O} $ $ -160.7 $ $ 2\mathrm{A}\mathrm{l}+3/2{\mathrm{O}}_{2}\to {\mathrm{A}\mathrm{l}}_{2}{\mathrm{O}}_{3} $ $ -454.2 $ $ 2\mathrm{C}\mathrm{r}+3/2{\mathrm{O}}_{2}\to {\mathrm{C}\mathrm{r}}_{2}{\mathrm{O}}_{3} $ $ -298.3 $ $ 2\mathrm{M}\mathrm{n}+{\mathrm{C}\mathrm{r}}_{2}{\mathrm{O}}_{3}\to \mathrm{M}\mathrm{n}{\mathrm{C}\mathrm{r}}_{2}{\mathrm{O}}_{4} $ $ -1224.9 $ -
[1] YAMAMOTO Y, BRADY M P, LU Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316(5823): 433-436. doi: 10.1126/science.1137711 [2] 周禹,张宏亮,李满昌,等. 超临界水冷堆堆内构件选材研究[J]. 核动力工程,2013, 34(1): 60-64. doi: 10.3969/j.issn.0258-0926.2013.01.013 [3] GUO X L, CHEN K, GAO W H, et al. Corrosion behavior of alumina-forming and oxide dispersion strengthened austenitic 316 stainless steel in supercritical water[J]. Corrosion Science, 2018, 138: 297-306. doi: 10.1016/j.corsci.2018.04.026 [4] HEUER A H, HOVIS D B, SMIALEK J L, et al. Alumina scale formation: a new perspective[J]. Journal of the American Ceramic Society, 2011, 94(S1): s146-s153. [5] APHALE A N, HU B X, REISERT M, et al. Oxidation behavior and chromium evaporation from Fe and Ni base alloys under SOFC systems operation conditions[J]. JOM, 2019, 71(1): 116-123. doi: 10.1007/s11837-018-3188-2 [6] YAMAMOTO Y, BRADY M P, MURALIDHARAN G, et al. Development of creep-resistant, alumina-forming ferrous alloys for high-temperature structural use[C]//ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. Seattle: ASME, 2018. [7] NIU Y, WANG S, GAO F, et al. The nature of the third-element effect in the oxidation of Fe–xCr–3at.% Al alloys in 1atm O2 at 1000℃[J]. Corrosion Science, 2008, 50(2): 345-356. doi: 10.1016/j.corsci.2007.06.019 [8] XU X Q, ZHANG X F, SUN X Y, et al. Effects of silicon additions on the oxide scale formation of an alumina-forming austenitic alloy[J]. Corrosion Science, 2012, 65: 317-321. doi: 10.1016/j.corsci.2012.08.039 [9] SHEN L, WU B J, ZHAO K, et al. Reason for negative effect of Nb addition on oxidation resistance of alumina-forming austenitic stainless steel at 1323 K[J]. Corrosion Science, 2021, 191: 109754. doi: 10.1016/j.corsci.2021.109754 [10] WEN D H, LI Z, JIANG B B, et al. Effects of Nb/Ti/V/Ta on phase precipitation and oxidation resistance at 1073 K in alumina-forming austenitic stainless steels[J]. Materials Characterization, 2018, 144: 86-98. doi: 10.1016/j.matchar.2018.07.007 [11] GAO Y, SUN D Y, LIU Z, et al. Oxide scale growth behavior of alumina-forming austenitic stainless steel exposed to supercritical water[J]. Corrosion Science, 2024, 227: 111681. doi: 10.1016/j.corsci.2023.111681 [12] TAN L, ALLEN T R, YANG Y. Corrosion behavior of alloy 800H (Fe–21Cr–32Ni) in supercritical water[J]. Corrosion Science, 2011, 53(2): 703-711. doi: 10.1016/j.corsci.2010.10.021 [13] SHEN Z, CHEN K, GUO X L, et al. A study on the corrosion and stress corrosion cracking susceptibility of 310-ODS steel in supercritical water[J]. Journal of Nuclear Materials, 2019, 514: 56-65. doi: 10.1016/j.jnucmat.2018.11.016 [14] GUO S W, XU D H, LI Y H, et al. Corrosion characteristics and mechanisms of typical Ni-based corrosion-resistant alloys in sub- and supercritical water[J]. The Journal of Supercritical Fluids, 2021, 170: 105138. doi: 10.1016/j.supflu.2020.105138 [15] YOUNG D J. High temperature oxidation and corrosion of metals[M]. Amsterdam: Elsevier, 2008, 24-29. [16] SAUNDERS S R J, MONTEIRO M, RIZZO F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review[J]. Progress in Materials Science, 2008, 53(5): 775-837. doi: 10.1016/j.pmatsci.2007.11.001 [17] GAO Y, SU R R, LIU Z, et al. High-resolution characterization reveals the role of Al content in the evolution of oxide scales formed on alumina-forming alloy exposed to supercritical water[J]. Corrosion Science, 2024, 231: 111968. doi: 10.1016/j.corsci.2024.111968 [18] BRUMM M W, GRABKE H J. The oxidation behaviour of NiAl-I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloy[J]. Corrosion Science, 1992, 33(11): 1677-1690. doi: 10.1016/0010-938X(92)90002-K [19] DEODESHMUKH V P, MATTHEWS S J, KLARSTROM D L. High-temperature oxidation performance of a new alumina-forming Ni–Fe–Cr–Al alloy in flowing air[J]. International Journal of Hydrogen Energy, 2011, 36(7): 4580-4587. doi: 10.1016/j.ijhydene.2010.04.099 [20] DU D H, CHEN K, ZHANG L F, et al. Microstructural investigation of the nodular corrosion of 304NG stainless steel in supercritical water[J]. Corrosion Science, 2020, 170: 108652. doi: 10.1016/j.corsci.2020.108652