高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高耐蚀含铝奥氏体不锈钢在超临界水中腐蚀行为研究

高阳 郭相龙 姜钰凡 伍建文 唐睿 黄彦平 张乐福

高阳, 郭相龙, 姜钰凡, 伍建文, 唐睿, 黄彦平, 张乐福. 高耐蚀含铝奥氏体不锈钢在超临界水中腐蚀行为研究[J]. 核动力工程, 2024, 45(6): 271-279. doi: 10.13832/j.jnpe.2024.06.0271
引用本文: 高阳, 郭相龙, 姜钰凡, 伍建文, 唐睿, 黄彦平, 张乐福. 高耐蚀含铝奥氏体不锈钢在超临界水中腐蚀行为研究[J]. 核动力工程, 2024, 45(6): 271-279. doi: 10.13832/j.jnpe.2024.06.0271
Gao Yang, Guo Xianglong, Jiang Yufan, Wu Jianwen, Tang Rui, Huang Yanping, Zhang Lefu. Study on Corrosion Behavior of High-corrosion Resistance AFAs in Supercritical Water[J]. Nuclear Power Engineering, 2024, 45(6): 271-279. doi: 10.13832/j.jnpe.2024.06.0271
Citation: Gao Yang, Guo Xianglong, Jiang Yufan, Wu Jianwen, Tang Rui, Huang Yanping, Zhang Lefu. Study on Corrosion Behavior of High-corrosion Resistance AFAs in Supercritical Water[J]. Nuclear Power Engineering, 2024, 45(6): 271-279. doi: 10.13832/j.jnpe.2024.06.0271

高耐蚀含铝奥氏体不锈钢在超临界水中腐蚀行为研究

doi: 10.13832/j.jnpe.2024.06.0271
基金项目: 国家重点研发计划项目(2018YFE0116200)
详细信息
    作者简介:

    高 阳(1991—),男,博士研究生,现主要从事核材料服役性能评估工作,E-mail: l7016@163.com

    通讯作者:

    郭相龙,E-mail: guoxianglong@sjtu.edu.cn

  • 中图分类号: TG172.82;TL341

Study on Corrosion Behavior of High-corrosion Resistance AFAs in Supercritical Water

  • 摘要: 为解决传统不锈钢在超临界水冷堆(SCWR)堆芯高温高压、强腐蚀性服役环境中不适用的问题,针对性地设计制备了新型含铝奥氏体不锈钢(AFAs),采用高压釜浸泡试验研究了其在600℃/25 MPa超临界水中的腐蚀行为。利用多种先进微观分析技术研究了AFAs在超临界水中腐蚀后试样表面氧化膜形貌、成分及结构特征,用以探究合金在超临界水中的耐腐蚀机制及氧化铝成膜行为。研究结果表明:AFAs在600℃超临界水中能形成连续的氧化铝膜从而具备优异的耐腐蚀性能,1000 h腐蚀增重量低于10 mg/dm2,优于文献报道的在相同条件下腐蚀的C276合金和310-ODS合金。该氧化铝膜与合金基体结合紧密无明显分界,能有效阻碍超临界水中氧化介质与合金基体的直接接触,抑制合金中Fe的外扩散,为合金提供优异的保护性。然而,AFAs中的Laves相会影响局部氧化铝膜的均匀性,导致外层MnCr2O4颗粒的形成。因此,AFAs需要在维持氧化铝连续成膜的同时严格控制Laves相含量,从而满足SCWR的应用需求。本文研究结果可为SCWR用含铝奥氏体不锈钢研发设计提供数据及理论支撑。

     

  • 图  1  试验设备示意图

    Figure  1.  Schematic Illustration of the Testing System

    图  2  AFAs在600℃/25 MPa超临界水中腐蚀1000 h的腐蚀增重-时间曲线

    Figure  2.  Corrosion Weight Gain versus Time Curves of AFAs Exposed in 600℃ and 25 MPa Supercritical Water

    图  3  AFAs在600℃/25 MPa超临界水中腐蚀100、1000 h后表面氧化膜形貌

    Figure  3.  Surface Oxide Morphologies of AFAs Exposed in 600℃ and 25 MPa Supercritical-water for 100 h and 1000 h

    图  4  AFAs在600℃超临界水中腐蚀100 h和1000 h后表面氧化物物相分析

    Figure  4.  Surface Oxide Analysis of AFAs Exposed in 600℃ Supercritical-water for 100 h and 1000 h

    图  5  AFAs在600℃超临界水中腐蚀1000 h后截面氧化膜EDS面扫描分析

    Figure  5.  EDS Mapping Analysis of the Cross-sectional Oxide Formed on AFAs Exposed in 600℃ Supercritical-water for 1000 h

    图  6  AFAs在600℃超临界水中腐蚀1000 h后的截面氧化膜线扫描分析结果(线扫描位置见图5)

    Figure  6.  EDS Line Analysis of the Cross-sectional Oxide Formed on AFAs Exposed in 600℃ Supercritical-water for 1000 h

    图  7  AFAs在600℃超临界水中腐蚀1000 h后截面氧化膜SAED表征

    Figure  7.  SAED Analysis of Cross-sectional Oxide Formed on AFAs Exposed in 600℃ Supercritical-water for 1000 h

    图  8  AFAs在600℃超临界水中腐蚀1000 h后截面氧化膜微区分析

    Figure  8.  Detail Analysis of Cross-sectional Oxide Formed on AFAs Exposed in 600℃ Supercritical-water for 1000 h

    图  9  AFAs在600℃超临界水中腐蚀1000 h后局部不连续氧化铝膜微区分析

    Figure  9.  Detail Analysis of Discontinuous Alumina Scale Formed on AFAs Exposed in 600℃ Supercritical-water for 1000 h

    表  1  AFAs成分表

    Table  1.   Chemical Composition of AFAs

    元素NiCrAlNbCuSiMnMoCFe
    质量分数(理论)/%26192.511.51240.08余量
    质量分数(实际)/%25.6319.502.210.821.591.262.003.400.08余量
    下载: 导出CSV

    表  2  3种合金在超临界水中腐蚀动力学拟合结果

    Table  2.   Fitting Results of Corrosion Kinetics in Supercritical-water for Three Alloys

    合金材料knR2
    C2761.540.460.98
    310-ODS8.100.180.97
    AFAs0.200.540.99
    下载: 导出CSV

    表  3  图3对应位置处的EDS点扫描结果

    Table  3.   EDS Point Analysis Results of Locations in Fig.3

    位置 元素质量分数/%
    O Al Cr Fe Ni Mn Si Cu Nb Mo
    1 29.36 6.51 31.30 15.58 8.34 6.19 0.44 0.41 0.62 1.27
    2 25.86 15.10 19.69 19.38 6.73 7.59 1.04 0.60 0.48 3.51
    3 16.35 5.48 19.49 31.46 17.39 4.13 0.90 0.93 0.73 3.14
    4 25.70 3.96 32.85 19.32 9.62 4.80 0.82 0.47 0.50 1.96
    下载: 导出CSV

    表  4  AFAs在600℃超临界水中发生的氧化反应及对应反应的形成能

    Table  4.   Reactions and Corresponding Gibbs Free Energy of AFAs Exposed in 600℃ Supercritical-water

    反应 形成能ΔGf/(kJ·mol−1)
    $ 3\mathrm{F}\mathrm{e}+2{\mathrm{O}}_{2}\to {\mathrm{F}\mathrm{e}}_{3}{\mathrm{O}}_{4} $ $ -202.9 $
    $ 2\mathrm{F}\mathrm{e}+3/2{\mathrm{O}}_{2}\to {\mathrm{F}\mathrm{e}}_{2}{\mathrm{O}}_{3} $ $ -126.6 $
    $ \mathrm{N}\mathrm{i}+1/2{\mathrm{O}}_{2}\to \mathrm{N}\mathrm{i}\mathrm{O} $ $ -160.7 $
    $ 2\mathrm{A}\mathrm{l}+3/2{\mathrm{O}}_{2}\to {\mathrm{A}\mathrm{l}}_{2}{\mathrm{O}}_{3} $ $ -454.2 $
    $ 2\mathrm{C}\mathrm{r}+3/2{\mathrm{O}}_{2}\to {\mathrm{C}\mathrm{r}}_{2}{\mathrm{O}}_{3} $ $ -298.3 $
    $ 2\mathrm{M}\mathrm{n}+{\mathrm{C}\mathrm{r}}_{2}{\mathrm{O}}_{3}\to \mathrm{M}\mathrm{n}{\mathrm{C}\mathrm{r}}_{2}{\mathrm{O}}_{4} $ $ -1224.9 $
    下载: 导出CSV
  • [1] YAMAMOTO Y, BRADY M P, LU Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316(5823): 433-436. doi: 10.1126/science.1137711
    [2] 周禹,张宏亮,李满昌,等. 超临界水冷堆堆内构件选材研究[J]. 核动力工程,2013, 34(1): 60-64. doi: 10.3969/j.issn.0258-0926.2013.01.013
    [3] GUO X L, CHEN K, GAO W H, et al. Corrosion behavior of alumina-forming and oxide dispersion strengthened austenitic 316 stainless steel in supercritical water[J]. Corrosion Science, 2018, 138: 297-306. doi: 10.1016/j.corsci.2018.04.026
    [4] HEUER A H, HOVIS D B, SMIALEK J L, et al. Alumina scale formation: a new perspective[J]. Journal of the American Ceramic Society, 2011, 94(S1): s146-s153.
    [5] APHALE A N, HU B X, REISERT M, et al. Oxidation behavior and chromium evaporation from Fe and Ni base alloys under SOFC systems operation conditions[J]. JOM, 2019, 71(1): 116-123. doi: 10.1007/s11837-018-3188-2
    [6] YAMAMOTO Y, BRADY M P, MURALIDHARAN G, et al. Development of creep-resistant, alumina-forming ferrous alloys for high-temperature structural use[C]//ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. Seattle: ASME, 2018.
    [7] NIU Y, WANG S, GAO F, et al. The nature of the third-element effect in the oxidation of Fe–xCr–3at.% Al alloys in 1atm O2 at 1000℃[J]. Corrosion Science, 2008, 50(2): 345-356. doi: 10.1016/j.corsci.2007.06.019
    [8] XU X Q, ZHANG X F, SUN X Y, et al. Effects of silicon additions on the oxide scale formation of an alumina-forming austenitic alloy[J]. Corrosion Science, 2012, 65: 317-321. doi: 10.1016/j.corsci.2012.08.039
    [9] SHEN L, WU B J, ZHAO K, et al. Reason for negative effect of Nb addition on oxidation resistance of alumina-forming austenitic stainless steel at 1323 K[J]. Corrosion Science, 2021, 191: 109754. doi: 10.1016/j.corsci.2021.109754
    [10] WEN D H, LI Z, JIANG B B, et al. Effects of Nb/Ti/V/Ta on phase precipitation and oxidation resistance at 1073 K in alumina-forming austenitic stainless steels[J]. Materials Characterization, 2018, 144: 86-98. doi: 10.1016/j.matchar.2018.07.007
    [11] GAO Y, SUN D Y, LIU Z, et al. Oxide scale growth behavior of alumina-forming austenitic stainless steel exposed to supercritical water[J]. Corrosion Science, 2024, 227: 111681. doi: 10.1016/j.corsci.2023.111681
    [12] TAN L, ALLEN T R, YANG Y. Corrosion behavior of alloy 800H (Fe–21Cr–32Ni) in supercritical water[J]. Corrosion Science, 2011, 53(2): 703-711. doi: 10.1016/j.corsci.2010.10.021
    [13] SHEN Z, CHEN K, GUO X L, et al. A study on the corrosion and stress corrosion cracking susceptibility of 310-ODS steel in supercritical water[J]. Journal of Nuclear Materials, 2019, 514: 56-65. doi: 10.1016/j.jnucmat.2018.11.016
    [14] GUO S W, XU D H, LI Y H, et al. Corrosion characteristics and mechanisms of typical Ni-based corrosion-resistant alloys in sub- and supercritical water[J]. The Journal of Supercritical Fluids, 2021, 170: 105138. doi: 10.1016/j.supflu.2020.105138
    [15] YOUNG D J. High temperature oxidation and corrosion of metals[M]. Amsterdam: Elsevier, 2008, 24-29.
    [16] SAUNDERS S R J, MONTEIRO M, RIZZO F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review[J]. Progress in Materials Science, 2008, 53(5): 775-837. doi: 10.1016/j.pmatsci.2007.11.001
    [17] GAO Y, SU R R, LIU Z, et al. High-resolution characterization reveals the role of Al content in the evolution of oxide scales formed on alumina-forming alloy exposed to supercritical water[J]. Corrosion Science, 2024, 231: 111968. doi: 10.1016/j.corsci.2024.111968
    [18] BRUMM M W, GRABKE H J. The oxidation behaviour of NiAl-I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloy[J]. Corrosion Science, 1992, 33(11): 1677-1690. doi: 10.1016/0010-938X(92)90002-K
    [19] DEODESHMUKH V P, MATTHEWS S J, KLARSTROM D L. High-temperature oxidation performance of a new alumina-forming Ni–Fe–Cr–Al alloy in flowing air[J]. International Journal of Hydrogen Energy, 2011, 36(7): 4580-4587. doi: 10.1016/j.ijhydene.2010.04.099
    [20] DU D H, CHEN K, ZHANG L F, et al. Microstructural investigation of the nodular corrosion of 304NG stainless steel in supercritical water[J]. Corrosion Science, 2020, 170: 108652. doi: 10.1016/j.corsci.2020.108652
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-23
  • 修回日期:  2024-08-26
  • 刊出日期:  2024-12-17

目录

    /

    返回文章
    返回