Experimental Study on Minimum Attenuation Particle Size of Submicron Aerosol Spray Removal
-
摘要: 亚微米气溶胶颗粒喷淋去除机制表现出明显较低的去除效率,探明喷淋特性对亚微米气溶胶的最低衰减粒径的影响对于严重事故管理具有重要意义。基于自主搭建的气溶胶喷淋去除实验台架,对多分散、多种类、多组分亚微米气溶胶颗粒进行了实验研究,分析了喷淋特性与气溶胶最低衰减粒径间的关系。实验结果表明,亚微米气溶胶喷淋去除的最低衰减粒径集中在0.3~0.5 μm的粒径区间;喷淋流量通量增加,喷淋液滴粒径减小,最低衰减粒径也相应减小。多组分气溶胶在同样的喷淋特性下最低衰减粒径不同,与中值粒径有关。此研究可用于不同喷淋特性下亚微米气溶胶最低衰减粒径的预测,为严重事故的管理提供可靠的数据支持。Abstract: The spray removal mechanism of submicron aerosol particles exhibits significantly lower removal efficiency. Investigating the influence of spray characteristics on the minimum attenuation particle size of submicron aerosols is of paramount importance for severe accident management. This study, based on a self-constructed experimental platform for spray removal of aerosols, conducted experimental research on various dispersed submicron aerosol particles, and elucidated the relationship between spray characteristics and the minimum attenuation particle size of aerosols. The research findings indicate that the minimum attenuation particle size for submicron aerosol spray removal is concentrated in the particle size range of 0.3~0.5 μm. As the spray flow rate increases, the droplet size decreases, and consequently, the minimum attenuation particle size also decreases. For multi-component aerosol particles under the same spray characteristics, the minimum attenuation particle size varies and is related to the median particle size. Therefore, this study can be utilized to predict the minimum attenuation particle size of multi-component submicron aerosols under different spray characteristics, thus providing reliable data support for the management of severe accidents.
-
表 1 实验工况
Table 1. Test Cases
工况 喷淋液滴
粒径/μm流量通量/
(L·h−1·m−2)气溶胶种类 CMD/μm 喷嘴
型号1 470 153 TiO2 0.50 JJXP030 2 310 229 TiO2 0.50 JJXP030 3 295 255 TiO2 0.50 JJXP030 4 230 306 TiO2 0.50 JJXP030 5 530 306 TiO2 0.50 JJXP060 6 470 153 KI 0.32 JJXP030 7 295 255 40%TiO2+60%KI 0.39 JJXP030 8 295 255 20%TiO2+80%KI 0.35 JJXP030 CMD—气溶胶中值粒径。 表 2 喷淋特性最低衰减粒径关系
Table 2. Relationship between Spray Characteristics and Minimum Attenuation Particle Size
喷淋流量
通量/(L·h−1·m−2)最低衰减
粒径/μm各粒径喷淋去除
衰减常数/10−4 s−1153 0.55 1.8~9.4 229 0.54 3.0~8.1 255 0.45 4.2~12.0 306 0.41 5.2~22.0 -
[1] 周夏峰,谷海峰,李富. 安全壳过滤排放系统实验用气溶胶的确定及相关参数的选取[J]. 核动力工程,2014, 35(5): 124-127. [2] 于汇宇. 安全壳喷淋去除气溶胶特性研究[D]. 哈尔滨: 哈尔滨工程大学,2023. [3] 于汇宇,谷海峰,孙中宁,等. 喷淋去除气溶胶的模型及实验研究[J]. 哈尔滨工程大学学报,2023, 44(5): 815-822. doi: 10.11990/jheu.202108021 [4] 刘建昌,陈忆晨,余剑,等. 华龙一号失水事故后安全壳内气溶胶自然沉降现象研究[J]. 核安全,2022, 21(1): 75-81. doi: 10.3969/j.issn.1672-5360.2022.1.haq202201012 [5] 李钰. 放射性气溶胶在安全壳内输运过程中的损失机理研究[D]. 上海: 上海交通大学,2018. [6] DEL CORNO A, MORANDI S, PAROZZI F, et al. Experiments on aerosol removal by high-pressure water spray[J]. Nuclear Engineering and Design, 2017, 311: 28-34. doi: 10.1016/j.nucengdes.2016.06.043 [7] KALTENBACH C, LAURIEN E. CFD simulation of aerosol particle removal by water spray in the model containment THAI[J]. Journal of Aerosol Science, 2018, 120: 62-81. doi: 10.1016/j.jaerosci.2018.03.005 [8] PORCHERON E, LEMAITRE P, MARCHAND D, et al. Experimental and numerical approaches of aerosol removal in spray conditions for containment application[J]. Nuclear Engineering and Design, 2010, 240(2): 336-343. doi: 10.1016/j.nucengdes.2008.08.023 [9] 李济深,张斌,缪凡,等. 反应堆安全壳中高精度喷淋去除放射性气溶胶模型的开发及验证[J]. 西安交通大学学报,2023, 57(12): 146-156. doi: 10.7652/xjtuxb202312015 [10] LIANG H, ERKAN N, ZHOU Q, et al. Effect of vessel size scale on the aerosol spray scavenging efficiency with water mist[J]. Journal of Aerosol Science, 2022, 159: 105853. doi: 10.1016/j.jaerosci.2021.105853 [11] PORCHERON E, LEMAITRE P. Analysis of aerosol collection by droplets: application to fission products removal in case of severe accident[C]//16th International Conference on Nuclear Engineering. Orlando: ASME, 2008: 707-716. [12] GUPTA S. Experimental investigations relevant for hydrogen and fission product issues raised by the Fukushima accident[J]. Nuclear Engineering and Technology, 2015, 47(1): 11-25. doi: 10.1016/j.net.2015.01.002 [13] GUPTA S, von Laufenberg B, Freitag M, et al. Instrumentation for LWR containment experiments under accident conditions[C]//OECD/NEA, ENEA. Proceedings of Specialist Workshop on Advanced Instrumentation and Measurement Techniques for Nuclear Reactor Thermal Hydraulics (SWINTH-2016). Italy: SWINTH, 2016. [14] GUPTA S, SCHMIDT E, VON LAUFENBERG B, et al. THAI test facility for experimental research on hydrogen and fission product behaviour in light water reactor containments[J]. Nuclear Engineering and Design, 2015, 294: 183-201. doi: 10.1016/j.nucengdes.2015.09.013 [15] 田林涛. 安全壳内源项气溶胶去除特性实验研究[D]. 哈尔滨: 哈尔滨工程大学,2020. [16] TANG J X, LIU Z, ZHANG L T, et al. Experimental study on polydisperse aerosol removal under multi-parameter spray conditions in containment[J]. Progress in Nuclear Energy, 2025, 181: 105660. doi: 10.1016/j.pnucene.2025.105660 [17] LIANG H, ZHOU Q, ERKAN N, et al. Effect of spray properties on aerosol scavenging efficiency with water mist[J]. Aerosol Science and Technology, 2022, 56(1): 29-45. doi: 10.1080/02786826.2021.1966377 -