Research on Data Assimilation Technology for Nuclear Power Source Operating Conditions
-
摘要: 为使空间核电源的仿真模型输出更接近真实数据,实现在轨运行阶段的天地同步和数字孪生,为远程诊断和预测奠定基础,本文采用集合卡尔曼滤波同化方法,结合空间堆热工水力仿真程序TASTIN开发了数据同化模块,并对核电源启动、反应性引入及紧急停堆工况进行了测试,结果表明在这三种瞬态工况数据同化实验中,各运行参数的同化效率均能达到90%以上,因此,本文提出的数据同化方法能够有效校正仿真模型。Abstract: To enhance the alignment of simulation model outputs with real data for space nuclear power systems, and to achieve ground-space synchronization and digital twin implementation during the in-orbit operational phase, thereby laying the groundwork for remote diagnostics and prognostics, this study employs the Ensemble Kalman Filter assimilation technique. A data assimilation module was developed in conjunction with the Thermal-hydraulic Analysis Code of Space Thermionic Nuclear System (TASTIN). This module was tested under various transient conditions, including reactor startup, reactivity insertion, and emergency shutdown. The results demonstrate that the assimilation efficiency of operational parameters exceeds 90% across these three transient scenarios. Consequently, the data assimilation method proposed in this paper can effectively correct the simulation model.
-
表 1 双实验程序对比表
Table 1. Code Comparison for Twin Experiment
程序 SSAC TASTIN 基本功能 用于热离子型反应堆及试验装置的设计基准事故分析 用于热离子型反应堆启动、停堆及事故安全特性分析 关键模型 点堆模型、固体传热、冷却剂流动传热、回路压降等 与SSAC程序相比,增加了热电转换模型、热管启动模型、反应性控制系统模型等 基本假设 控制容积平衡 不可压缩 求解算法 高斯赛德尔迭代法 吉尔算法 编程语言 FORTRAN95 FORTRAN77 表 2 启动工况数据同化评价参数统计
Table 2. Data Assimilation Evaluation Parameters under Startup Condition
参数名称 误差类型 MSE RMSE MAE AE/% 燃料芯块温度 原始仿真误差 1.03×105 3.21×102 3.02×102 同化后误差 1.56×102 1.25×101 1.24×101 99.85 发射极温度 原始仿真误差 9.08×104 3.13×102 2.94×102 同化后误差 3.58×102 1.89×101 1.88×101 99.63 接收极温度 原始仿真误差 7.24×103 8.51×101 8.25×101 同化后误差 5.33×102 2.31×101 9.80 92.64 冷却剂进口温度 原始仿真误差 6.20×103 7.88×101 7.63×101 同化后误差 3.51×102 1.87×101 1.06×101 94.34 冷却剂出口温度 原始仿真误差 6.56×103 8.10×101 7.86×101 同化后误差 2.81×102 1.68×101 8.66 95.71 表 3 反应性引入工况数据同化评价参数统计
Table 3. Data Assimilation Evaluation Parameters under Reactivity Insertion Condition
参数名称 误差类型 MSE RMSE MAE AE/% 核功率 原始仿真误差 9.09×109 9.53×104 4.86×104 同化后误差 4.57×108 2.14×104 4.36×103 94.97 燃料芯块温度 原始仿真误差 1.12×105 3.35×102 3.01×102 同化后误差 2.22×101 4.71 4.59 99.98 发射极温度 原始仿真误差 6.41×104 2.53×102 2.35×102 同化后误差 1.22×103 3.49×101 3.27×101 98.10 接收极温度 原始仿真误差 6.55×102 2.56×101 2.33×101 同化后误差 5.28 2.30 2.12 99.19 冷却剂进口温度 原始仿真误差 3.98×102 2.00×101 1.97×101 同化后误差 8.62 2.94 2.83 97.83 冷却剂出口温度 原始仿真误差 3.46×102 1.86×101 1.61×101 同化后误差 1.40×101 3.74 3.66 95.97 表 4 紧急停堆工况数据同化评价参数统计值
Table 4. Data Assimilation Evaluation Parameters under Emergency Shutdown Condition
参数名称 误差类型 MSE RMSE MAE AE/% 核功率 原始仿真误差 2.89×106 1.70×103 1.57×103 同化后误差 5.87×103 7.66×101 3.51×101 99.80 燃料芯块温度 原始仿真误差 8.36×103 9.14×101 8.82×101 同化后误差 3.34×103 1.83 1.49 99.96 发射极温度 原始仿真误差 5.23 7.23×101 6.97×101 同化后误差 5.59×101 7.48 4.30 98.93 接收极温度 原始仿真误差 7.35×101 8.57 7.38 同化后误差 2.28 1.51 1.24 96.93 冷却剂进口温度 原始仿真误差 3.08×102 1.76×101 1.60×101 同化后误差 2.86 1.69 1.53 99.07 冷却剂出口温度 原始仿真误差 1.93×102 1.39×101 1.24×101 同化后误差 2.69 1.64 1.51 98.61 -
[1] ZHANG X L, SU G F, YUAN H Y, et al. Modified ensemble kalman filter for nuclear accident atmospheric dispersion: Prediction improved and source estimated[J]. Journal of Hazardous Materials, 2014, 280: 143-155. doi: 10.1016/j.jhazmat.2014.07.064 [2] ZHENG D, LEUNG J, LEE B, et al. Data assimilation in the atmospheric dispersion model for nuclear accident assessments[J]. Atmospheric Environment, 2007, 41(11): 2438-2446. doi: 10.1016/j.atmosenv.2006.05.076 [3] HEO J, TURINSKY P J, DOSTER J M. Optimization of thermal-hydraulic reactor system for SMRs via data assimilation and uncertainty quantification[J]. Nuclear Science and Engineering, 2013, 173(3): 293-311. doi: 10.13182/NSE11-113 [4] 胡永红. 小型飞行器高度定位数据融合方法[J]. 传感器技术,2003, 22(6): 24-26. [5] TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011(1): 154798. [6] LI C Z, MAHADEVAN S, LING Y, et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal, 2017, 55(3): 930-941. doi: 10.2514/1.J055201 [7] BUSQUIM E SILVA R, MARQUES A L F, CRUZ J J, et al. Reactivity estimation during a reactivity-initiated accident using the extended Kalman filter[J]. Annals of Nuclear Energy, 2015, 85: 753-762. doi: 10.1016/j.anucene.2015.06.031 [8] 黄喜军. 数据校正在火电机组性能诊断中的研究[D]. 南京: 东南大学,2018. [9] HAMILL T M, WHITAKER J S, SNYDER C. Distance-dependent filtering of background error covariance estimates in an ensemble kalman filter[J]. Monthly Weather Review, 2001, 129(11): 2776-2790. doi: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2 [10] ANDERSON J L, ANDERSON S L. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts[J]. Monthly Weather Review, 1999, 127(12): 2741-2758. doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2 [11] HOUTEKAMER P L, DEROME J. Methods for ensemble prediction[J]. Monthly Weather Review, 1995, 123(7): 2181-2196. doi: 10.1175/1520-0493(1995)123<2181:MFEP>2.0.CO;2 [12] HOFFMAN R N, KALNAY E. Lagged average forecasting, an alternative to Monte Carlo forecasting[J]. Tellus A: Dynamic Meteorology and Oceanography, 1983, 35(2): 100-118. doi: 10.3402/tellusa.v35i2.11425 [13] ZHOU B B, DU J, DIMEGO G. Introduction to the NCEP very short range ensemble forecast system (VSREF)[C]//14th Conference on Aviation, Range, and Aerospace Meteorology. Atlanta: AMS, 2010. [14] 傅娜,陈葆德,谭燕,等. 基于快速更新同化的滞后短时集合预报试验及检验[J]. 气象,2013, 39(10): 1247-1256. [15] JIE W H, WU T W, WANG J, et al. Improvement of 6-15 day precipitation forecasts using a time-lagged ensemble method[J]. Advances in Atmospheric Sciences, 2014, 31(2): 293-304. doi: 10.1007/s00376-013-3037-8 [16] ABARBANEL H D I. Predicting the future: completing models of observed complex systems[M]. New York: Springer, 2013: 125-127. [17] 陈鹤,杨大文,刘钰,等. 集合卡尔曼滤波数据同化方法改进土壤水分模拟效果[J]. 农业工程学报,2016, 32(02): 99-104. [18] 朱继洲. 核反应堆安全分析[M]. 第三版. 西安: 西安交通大学出版社,2018: 109-111. -