Research on Thermoelectric Coupling Characteristics of a 100 kW Silent Heat Pipe Cooled Reactor Based on Finite Element Method
-
摘要: 静默式热管冷却反应堆(简称热管堆)因其采用高温热管耦合温差发电的能量传输及热电转换系统,具有非能动安全、高可靠、超静音等特点,是未来海陆空天多领域可移动式小型核电源的优选堆型。本文基于多物理场耦合分析平台COMSOL Multiphysics,针对百千瓦级静默式热管堆设计方案,建立了热管堆全系统四分之一模型,包括燃料棒、堆芯基体、热管、反射层、控制棒、滑动反射层、温差发电等系统,开展了稳态工况、单根热管失效工况以及单排热电器件脱载工况下的系统热电耦合特性分析。研究结果表明,由于堆芯基体以及热电系统基体的温度展平特性,单根热管失效不会对反应堆运行以及热电系统输出电功率产生显著影响,热管堆在出现局部热电器件脱载事故时,堆芯温度会因热电系统传热能力下降而升高,未脱载的热电系统仍可以正常工作,保证有效电能输出。Abstract: The silent heat pipe reactor adopts a energy transmission and thermoelectric conversion system that couples high-temperature heat pipes with thermoelectric power generation. It is a preferred reactor type of portable small nuclear power source in various fields such as sea, land, air, and space in the future due to its passive safety, high reliability and ultra silence. Based on the multi physical field coupling analysis platform COMSOL Multiphysics, this paper establishes a quarter model of the whole system of the heat pipe reactor according to the design scheme of a 100-kilowatt level silent heat pipe reactor, including fuel rods, core matrix, heat pipes, reflectors, control rods, sliding reflectors, thermoelectric generations and other systems. Steady-state operating conditions, single heat pipe failure conditions, and single-row thermoelectric system unloading conditions are analyzed to investigate system thermoelectric coupling characteristics. The research results indicate that due to the temperature flattening characteristics of the core matrix and the thermoelectric system matrix, the failure of a single heat pipe will not have a significant impact on the operation of the reactor and the output power of the thermoelectric system. When the local thermoelectric system unloading accident occurs in a heat pipe reactor, the core temperature will increase due to the decrease in the heat transfer capacity of the thermoelectric system. The thermoelectric system that has not been unloaded can still work normally, ensuring effective electrical energy output.
-
表 1 NUSTER-100热管堆总体设计参数
Table 1. Overall Design Parameters of NUSTER-100 Heat Pipe Cooled Reactor
参数 数值及类型 反应堆热功率/MW 1 反应堆电功率/kW 100 反应堆寿期/a 5 冷却系统 钠热管 能量转换系统 温差发电器 堆芯活性区体积/L 58.94 热管数目/根 109 燃料棒数目/根 480 富集度/% 73/55/19.75 3种UO2燃料棒数目 332/108/40 活性区基体材料 Mo 上下反射层材料 BeO 滑动反射层/控制棒数目 4/4 滑动反射层/控制棒材料 BeO(不锈钢)/ BeO(B4C) 燃料区外围区域反射层材料 Be 反射层外部材料 B4C 表 2 高温热管参数
Table 2. Parameters of High Temperature Heat Pipe
参数 数值及类型 工质 钾 热管类型 吸液芯 热管管壳材质 304不锈钢 热管工质充液量/g 20 外径/mm 28 长度/mm 800 (蒸发段/绝热段/冷凝段长度)/mm 200/150/250 内径/mm 22 吸液芯目数 300 -
[1] GUO K L, ZHANG Y, LIN X Y, et al. Transient thermoelectric characteristics of the principle prototype for the heat pipe cooled nuclear Silent themoelectirc reactor (NUSTER)[J]. Annals of Nuclear Energy, 2023, 189: 109818. doi: 10.1016/j.anucene.2023.109818 [2] SUN H, MA P, LIU X, et al. Conceptual design and analysis of a multipurpose micro nuclear reactor power source[J]. Annals of Nuclear Energy, 2018, 121: 118-127. doi: 10.1016/j.anucene.2018.07.025 [3] TANG S M, LIU X, WANG C L, et al. Thermal-electrical coupling characteristic analysis of the heat pipe cooled reactor with static thermoelectric conversion[J]. Annals of Nuclear Energy, 2022, 168: 108870. doi: 10.1016/j.anucene.2021.108870 [4] TANG S M, WANG C L, ZHANG D L, et al. Thermoelectric performance study on a heat pipe thermoelectric generator for micro nuclear reactor application[J]. International Journal of Energy Research, 2021, 45(8): 12301-12316. doi: 10.1002/er.6450 [5] PETERSON P F. Multiple-reheat Brayton cycles for nuclear power conversion with molten coolants[J]. Nuclear Technology, 2003, 144(3): 279-288. doi: 10.13182/NT144-279 [6] DAI Z W, WANG C L, ZHANG D L, et al. Design and analysis of a free-piston stirling engine for space nuclear power reactor[J]. Nuclear Engineering and Technology, 2021, 53(2): 637-646. doi: 10.1016/j.net.2020.07.011 [7] WANG C L, ZHANG R, GUO K L, et al. Dynamic simulation of a space gas-cooled reactor power system with a closed Brayton cycle[J]. Frontiers in Energy, 2021, 15(4): 916-929. doi: 10.1007/s11708-021-0757-9 [8] ZHANG R, GUO K L, WANG C L, et al. Thermal-hydraulic analysis of gas-cooled space nuclear reactor power system with closed Brayton cycle[J]. International Journal of Energy Research, 2021, 45(8): 11851-11867. doi: 10.1002/er.5813 [9] MCCLURE P R, POSTON D I, GIBSON M A, et al. Kilopower project: the KRUSTY fission power experiment and potential missions[J]. Nuclear Technology, 2020, 206(S1): S1-S12. [10] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. [11] WANG C L, SUN H, TANG S M, et al. Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system[J]. Nuclear Engineering and Technology, 2020, 52(1): 19-26. [12] ZHANG W W, ZHANG D L, WANG C L, et al. Conceptual design and analysis of a megawatt power level heat pipe cooled space reactor power system[J]. Annals of Nuclear Energy, 2020, 144: 107576. doi: 10.1016/j.anucene.2020.107576 [13] LIU X, ZHANG R, LIANG Y, et al. Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor[J]. Annals of Nuclear Energy, 2020, 142: 107412. doi: 10.1016/j.anucene.2020.107412 [14] ZHANG Z Q, CHAI X M, WANG C L, et al. Numerical investigation on startup characteristics of high temperature heat pipe for nuclear reactor[J]. Nuclear Engineering and Design, 2021, 378: 111180. doi: 10.1016/j.nucengdes.2021.111180 [15] MA Y G, LIU J S, YU H X, et al. Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor[J]. Nuclear Engineering and Technology, 2022, 54(6): 2094-2106. doi: 10.1016/j.net.2022.01.002 [16] TANG S M, LIAN Q, ZHU L X, et al. Thermal-electrical coupling analysis of the static heat pipe cooled reactor under heat pipe failure condition[J]. Nuclear Engineering and Design, 2024, 417: 112812. doi: 10.1016/j.nucengdes.2023.112812 [17] ZHANG Y, GUO K L, WANG C L, et al. Numerical analysis of segmented thermoelectric generators applied in the heat pipe cooled nuclear reactor[J]. Applied Thermal Engineering, 2022, 204: 117949. doi: 10.1016/j.applthermaleng.2021.117949 [18] HUANG J L, WANG C L, TIAN Z X, et al. Preliminary conceptual design and analysis of a 100 kWe level Nuclear Silent Thermal-Electrical Reactor (NUSTER-100)[J]. International Journal of Energy Research, 2022, 46(14): 19653-19666. doi: 10.1002/er.8542 -