高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有限元方法的百千瓦级静默式热管堆热电耦合特性研究

唐思邈 连强 朱隆祥 张卢腾 马在勇

唐思邈, 连强, 朱隆祥, 张卢腾, 马在勇. 基于有限元方法的百千瓦级静默式热管堆热电耦合特性研究[J]. 核动力工程, 2025, 46(3): 68-77. doi: 10.13832/j.jnpe.2024.060015
引用本文: 唐思邈, 连强, 朱隆祥, 张卢腾, 马在勇. 基于有限元方法的百千瓦级静默式热管堆热电耦合特性研究[J]. 核动力工程, 2025, 46(3): 68-77. doi: 10.13832/j.jnpe.2024.060015
Tang Simiao, Lian Qiang, Zhu Longxiang, Zhang Luteng, Ma Zaiyong. Research on Thermoelectric Coupling Characteristics of a 100 kW Silent Heat Pipe Cooled Reactor Based on Finite Element Method[J]. Nuclear Power Engineering, 2025, 46(3): 68-77. doi: 10.13832/j.jnpe.2024.060015
Citation: Tang Simiao, Lian Qiang, Zhu Longxiang, Zhang Luteng, Ma Zaiyong. Research on Thermoelectric Coupling Characteristics of a 100 kW Silent Heat Pipe Cooled Reactor Based on Finite Element Method[J]. Nuclear Power Engineering, 2025, 46(3): 68-77. doi: 10.13832/j.jnpe.2024.060015

基于有限元方法的百千瓦级静默式热管堆热电耦合特性研究

doi: 10.13832/j.jnpe.2024.060015
基金项目: 重庆市自然科学基金(2023NSCQ-BHX0189);国家自然科学基金(12305174)
详细信息
    作者简介:

    唐思邈(1993—),男,博士研究生,现主要从事反应堆热工水力方面研究,E-mail: simiao_tang@cqu.edu.cn

  • 中图分类号: TL334

Research on Thermoelectric Coupling Characteristics of a 100 kW Silent Heat Pipe Cooled Reactor Based on Finite Element Method

  • 摘要: 静默式热管冷却反应堆(简称热管堆)因其采用高温热管耦合温差发电的能量传输及热电转换系统,具有非能动安全、高可靠、超静音等特点,是未来海陆空天多领域可移动式小型核电源的优选堆型。本文基于多物理场耦合分析平台COMSOL Multiphysics,针对百千瓦级静默式热管堆设计方案,建立了热管堆全系统四分之一模型,包括燃料棒、堆芯基体、热管、反射层、控制棒、滑动反射层、温差发电等系统,开展了稳态工况、单根热管失效工况以及单排热电器件脱载工况下的系统热电耦合特性分析。研究结果表明,由于堆芯基体以及热电系统基体的温度展平特性,单根热管失效不会对反应堆运行以及热电系统输出电功率产生显著影响,热管堆在出现局部热电器件脱载事故时,堆芯温度会因热电系统传热能力下降而升高,未脱载的热电系统仍可以正常工作,保证有效电能输出。

     

  • 图  1  静默式小型核动力系统结构设计

    Figure  1.  Structural Design of Silent Small Nuclear Power System

    图  2  原理样机实物图

    Figure  2.  Photo of Principle Prototype

    图  3  数值模型几何的网格划分

    Figure  3.  Meshing of Numerical Model Geometry

    图  4  热管传热特性数值模拟结果与实验数据的对比

    Figure  4.  Comparison Between Simulation Results and Experimental Data of Heat Pipe Heat Transfer Characteristics

    图  5  10组温差发电器输出热电性能计算值与实验数据对比

    Figure  5.  Comparison between Calculated Values and Experimental Data of Thermoelectric Performance of 10 Sets of Thermoelectric Generators

    图  6  NUSTER-100仿真模型的几何模型

    Figure  6.  Geometric Model of NUSTER-100 Simulation Model

    图  7  NUSTER-100仿真模型网格划分

    Figure  7.  Meshing of NUSTER-100 Simulation Model

    图  8  稳态工况下NUSTER-100的整体温度分布

    Figure  8.  NUSTER-100 Temperature Distribution under Steady-state Operating Conditions

    图  9  燃料棒的轴向功率分布

    Figure  9.  Power Axial Distribution of Fuel Rods

    图  10  燃料棒的径向功率分布

    Figure  10.  Power Radial Distribution of Fuel Rods

    图  11  高温热管的温度分布云图

    Figure  11.  Temperature Distribution Contour of High-temperature Heat Pipe

    图  12  热电系统电势分布云图

    Figure  12.  Potential Distribution Contour of Thermoelectric System

    图  13  中心单根热管失效工况下系统温度分布

    Figure  13.  Temperature Distribution under Central Single Heat Pipe Failure Condition

    图  14  中心单根热管失效工况下堆芯燃料棒包壳温度分布

    Figure  14.  Fuel Rod Cladding Temperature Distribution under Central Single Heat Pipe Failure Condition

    图  15  中心单根热管失效工况下热管温度分布

    Figure  15.  Heat Pipe Temperature Distribution under Central Single Heat Pipe Failure Condition

    图  16  中心单根热管失效工况下热电系统电势分布

    Figure  16.  Potential Distribution in Thermoelectric Systems under Central Single Heat Pipe Failure Condition

    图  17  单排热电器件脱载工况下热管堆系统温度分布

    Figure  17.  Heat Pipe Reactor Temperature Distribution under Single Row Thermoelectric System Unloading Condition

    图  18  单排热电器件脱载工况下热管以及堆芯的温度分布

    Figure  18.  Heat Pipe and Core Temperature Distribution under Single Row Thermoelectric System Unloading Condition

    图  19  单排热电器件脱载工况下热电系统的温度分布

    Figure  19.  Thermoelectric System Temperature Distribution under Single Row Thermoelectric System Unloading Condition

    图  20  单排热电器件脱载工况下热电系统的电势分布

    Figure  20.  Potential Distribution in Thermoelectric Systems under Single Row Thermoelectric System Unloading Condition

    表  1  NUSTER-100热管堆总体设计参数

    Table  1.   Overall Design Parameters of NUSTER-100 Heat Pipe Cooled Reactor

    参数数值及类型
    反应堆热功率/MW1
    反应堆电功率/kW100
    反应堆寿期/a5
    冷却系统钠热管
    能量转换系统温差发电器
    堆芯活性区体积/L58.94
    热管数目/根109
    燃料棒数目/根480
    富集度/%73/55/19.75
    3种UO2燃料棒数目332/108/40
    活性区基体材料Mo
    上下反射层材料BeO
    滑动反射层/控制棒数目4/4
    滑动反射层/控制棒材料BeO(不锈钢)/ BeO(B4C)
    燃料区外围区域反射层材料Be
    反射层外部材料B4C
    下载: 导出CSV

    表  2  高温热管参数

    Table  2.   Parameters of High Temperature Heat Pipe  

    参数 数值及类型
    工质
    热管类型 吸液芯
    热管管壳材质 304不锈钢
    热管工质充液量/g 20
    外径/mm 28
    长度/mm 800
    (蒸发段/绝热段/冷凝段长度)/mm 200/150/250
    内径/mm 22
    吸液芯目数 300
    下载: 导出CSV
  • [1] GUO K L, ZHANG Y, LIN X Y, et al. Transient thermoelectric characteristics of the principle prototype for the heat pipe cooled nuclear Silent themoelectirc reactor (NUSTER)[J]. Annals of Nuclear Energy, 2023, 189: 109818. doi: 10.1016/j.anucene.2023.109818
    [2] SUN H, MA P, LIU X, et al. Conceptual design and analysis of a multipurpose micro nuclear reactor power source[J]. Annals of Nuclear Energy, 2018, 121: 118-127. doi: 10.1016/j.anucene.2018.07.025
    [3] TANG S M, LIU X, WANG C L, et al. Thermal-electrical coupling characteristic analysis of the heat pipe cooled reactor with static thermoelectric conversion[J]. Annals of Nuclear Energy, 2022, 168: 108870. doi: 10.1016/j.anucene.2021.108870
    [4] TANG S M, WANG C L, ZHANG D L, et al. Thermoelectric performance study on a heat pipe thermoelectric generator for micro nuclear reactor application[J]. International Journal of Energy Research, 2021, 45(8): 12301-12316. doi: 10.1002/er.6450
    [5] PETERSON P F. Multiple-reheat Brayton cycles for nuclear power conversion with molten coolants[J]. Nuclear Technology, 2003, 144(3): 279-288. doi: 10.13182/NT144-279
    [6] DAI Z W, WANG C L, ZHANG D L, et al. Design and analysis of a free-piston stirling engine for space nuclear power reactor[J]. Nuclear Engineering and Technology, 2021, 53(2): 637-646. doi: 10.1016/j.net.2020.07.011
    [7] WANG C L, ZHANG R, GUO K L, et al. Dynamic simulation of a space gas-cooled reactor power system with a closed Brayton cycle[J]. Frontiers in Energy, 2021, 15(4): 916-929. doi: 10.1007/s11708-021-0757-9
    [8] ZHANG R, GUO K L, WANG C L, et al. Thermal-hydraulic analysis of gas-cooled space nuclear reactor power system with closed Brayton cycle[J]. International Journal of Energy Research, 2021, 45(8): 11851-11867. doi: 10.1002/er.5813
    [9] MCCLURE P R, POSTON D I, GIBSON M A, et al. Kilopower project: the KRUSTY fission power experiment and potential missions[J]. Nuclear Technology, 2020, 206(S1): S1-S12.
    [10] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8.
    [11] WANG C L, SUN H, TANG S M, et al. Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system[J]. Nuclear Engineering and Technology, 2020, 52(1): 19-26.
    [12] ZHANG W W, ZHANG D L, WANG C L, et al. Conceptual design and analysis of a megawatt power level heat pipe cooled space reactor power system[J]. Annals of Nuclear Energy, 2020, 144: 107576. doi: 10.1016/j.anucene.2020.107576
    [13] LIU X, ZHANG R, LIANG Y, et al. Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor[J]. Annals of Nuclear Energy, 2020, 142: 107412. doi: 10.1016/j.anucene.2020.107412
    [14] ZHANG Z Q, CHAI X M, WANG C L, et al. Numerical investigation on startup characteristics of high temperature heat pipe for nuclear reactor[J]. Nuclear Engineering and Design, 2021, 378: 111180. doi: 10.1016/j.nucengdes.2021.111180
    [15] MA Y G, LIU J S, YU H X, et al. Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor[J]. Nuclear Engineering and Technology, 2022, 54(6): 2094-2106. doi: 10.1016/j.net.2022.01.002
    [16] TANG S M, LIAN Q, ZHU L X, et al. Thermal-electrical coupling analysis of the static heat pipe cooled reactor under heat pipe failure condition[J]. Nuclear Engineering and Design, 2024, 417: 112812. doi: 10.1016/j.nucengdes.2023.112812
    [17] ZHANG Y, GUO K L, WANG C L, et al. Numerical analysis of segmented thermoelectric generators applied in the heat pipe cooled nuclear reactor[J]. Applied Thermal Engineering, 2022, 204: 117949. doi: 10.1016/j.applthermaleng.2021.117949
    [18] HUANG J L, WANG C L, TIAN Z X, et al. Preliminary conceptual design and analysis of a 100 kWe level Nuclear Silent Thermal-Electrical Reactor (NUSTER-100)[J]. International Journal of Energy Research, 2022, 46(14): 19653-19666. doi: 10.1002/er.8542
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 修回日期:  2024-07-05
  • 网络出版日期:  2025-06-09
  • 刊出日期:  2025-06-09

目录

    /

    返回文章
    返回