Simulation and Experimental Study on Separation Characteristics of New Start-up Separator
-
摘要: 为提高启动分离器的分离效率,优化分离性能,本文设计一个带有波纹板分离结构的新型启动分离器为研究对象,对新型启动分离器的分离特性开展了模拟及试验研究。使用软件Fluent进行数值模拟计算,并采用整体模拟加局部等效的模拟方法。通过欧拉两相流模型,对启动分离器内的气液两相流体进行分离效率模拟计算,在整体模拟过程中使用多孔介质模型来等效替换波纹板区域。探究了启动分离器波纹板的分离特性,分析启动分离器入口气液流速对分离效率的影响,并通过冷态试验来验证模拟方法的可行性。结果表明,整体模拟结合局部等效模拟方法是一种可行且有效的方案;新型启动分离器引入波纹板结构后,其分离性能显著提升。此外,研究还揭示了启动分离器入口气相流速和液相流速与分离效率的关系,研究表明增加入口气相流速,分离效率降低;增加入口液相流速,分离效率提高;在计算过程中新型启动分离器分离效率始终大于99%;波纹板分离结构在提升分离效率方面发挥了关键作用,从而优化了启动分离器的分离性能。Abstract: To improve the separation efficiency and optimize the performance of the start-up separator, this paper designs a new type of startup separator with a corrugated plate separation structure as the research object and conducts simulation and experimental studies on the separation characteristics of the new separator. The software Fluent is employed for numerical simulation calculations, using a combined approach of overall simulation and local equivalence. The Eulerian two-phase flow model is utilized to simulate the separation efficiency of the gas-liquid two-phase fluid inside the start-up separator, with the corrugated plate region replaced equivalently using a porous media model in the overall simulation process. The separation characteristics of the corrugated plate in the start-up separator are investigated, and the influence of inlet gas-liquid flow velocity on separation efficiency is analyzed. The feasibility of the simulation method is verified through cold-state experiments. The results demonstrate that the combination of overall simulation with local equivalence simulation is a viable and effective approach. The introduction of a corrugated plate structure in the novel startup separator significantly enhances its separation performance. Furthermore, the study establishes the relationship between the inlet gas-phase and liquid-phase velocities and the separation efficiency of the startup separator. The findings show that increasing the inlet gas-phase velocity results in a decrease in separation efficiency, whereas increasing the inlet liquid-phase velocity improves the separation efficiency. Throughout the computational process, the separation efficiency of the novel startup separator remains consistently above 99%. The corrugated plate separation structure plays a pivotal role in improving separation efficiency, thereby optimizing the overall separation performance of the startup separator.
-
Key words:
- Start-up separator /
- Corrugated plate /
- Separation efficiency /
- Porous media
-
图 16 基础水力旋流器内的流场分布[14]
Figure 16. Flow Field Distribution within the Basic Hydrocyclone
表 1 仪表及测量设备的选型及量程
Table 1. Selection and Measurement Range of Instruments and Measuring Devices
仪表名称 仪表量程 生产厂家 精度/% 热电偶 −200~300℃ 东莞市展望五金制品有限公司 0.20 流量计 0.16~2.5 m3/h 上海自动化仪表集团股份有限公司 0.50 1.8~20 m3/h 上海自动化仪表集团股份有限公司 1.50 0~80 L/min 北京精量科技有限公司 0.50 4~20 Nm3/h 上海自动化仪表集团股份有限公司 1.50 12~120 Nm3/h 上海自动化仪表集团股份有限公司 1.50 激光粒
径谱仪0.1~2000 μm 丹东百特仪器有限公司 高精度
电子天平0~7.5 kg 利平电子衡器有限公司 0.001 微压差表 0~7000 Pa 美国德威尔仪器仪表制造有限公司 1 0~7000 Pa 美国德威尔仪器仪表制造有限公司 1 压力计 0~2500 kPa 美国艾默生电气公司 1 0~1000 kPa 美国艾默生电气公司 1 温湿度传感器 0~100 %RH 瑞士罗卓尼克公司 1 表 2 试验工况入口参数
Table 2. Inlet Parameters of Test Conditions
工况序号 部件样机运行
流量/(kg·s−1)入口干度 液相流量/
(t·h−1)气相流量/
(kg·h−1)1 2.15 0.001944836 8.37 16.31 2 1.30 0.002419579 5.03 12.20 3 0.99 0.002985823 3.82 11.44 4 1.00 0.003673142 3.83 14.12 5 1.15 0.004546738 4.37 19.96 6 1.31 0.005596551 4.92 27.69 7 1.37 0.008312615 4.97 41.66 8 0.23 0.057537345 1.00 61.05 9 0.21 0.038397456 1.01 40.33 10 0.16 0.021848918 0.92 20.55 11 0.13 0.012138350 0.80 9.83 -
[1] 霍东方. 超临界直流锅炉启动系统的种类及其技术特点[J]. 热力发电,2003, 32(5): 31-34. doi: 10.3969/j.issn.1002-3364.2003.05.009 [2] 刘彤,史飞,孙保民,等. 超临界锅炉启动汽水分离器应力分析及数值模拟[J]. 动力工程,2007, 27(6): 868-871. [3] 蔡延斌,唐勇. 超临界锅炉启动分离器制造工艺研究[J]. 电站系统工程,2006, 22(4): 55-56. doi: 10.3969/j.issn.1005-006X.2006.04.026 [4] 朱宝萍. 超超临界锅炉启动分离器的制造与检验控制[J]. 锅炉技术,2009, 40(4): 63-66. doi: 10.3969/j.issn.1672-4763.2009.04.014 [5] 王宗琪,王陶,章臣樾. 直流锅炉启动分离器数学模型与仿真[J]. 热能动力工程,1997, 12(1): 60-63. [6] 史绍平,余春平,余圣方,等. 启动分离器在超临界压力直流锅炉中的启动特性[J]. 动力工程,1997, 17(2): 37-42. [7] BAKHROMKINA A A, SHVARTS A L, CHUGREEV A A. Development and application of a new type of separators for supercritical and ultra-supercritical once-through boilers[J]. Power Technology and Engineering, 2015, 48(6): 475-479. doi: 10.1007/s10749-015-0559-5 [8] ZAMORA B, KAISER A S. Comparative efficiency evaluations of four types of cooling tower drift eliminator, by numerical investigation[J]. Chemical Engineering Science, 2011, 66(6): 1232-1245. doi: 10.1016/j.ces.2010.12.023 [9] ZHANG H, LIU Q F, QIN B K, et al. Simulating particle collision process based on Monte Carlo method[J]. Journal of Nuclear Science and Technology, 2015, 52(11): 1393-1401. [10] YANG L S, XU M H, WANG J J, et al. Experimental and numerical analysis of a demister with vortex generators[J]. Chinese Journal of Chemical Engineering, 2021, 33: 83-95. doi: 10.1016/j.cjche.2020.07.045 [11] 李守恒,杨励丹,王振文,等. 电站锅炉汽水分离装置的原理和设计[M]. 北京: 水利电力出版社,1986: 3-9,23-28,64-67. [12] LI J, WANG X M, HUANG S Y. Droplets turbulence effect of gas-water separator with corrugated plates[J]. Transactions of Tianjin University, 2009, 15(6): 440-445. doi: 10.1007/s12209-009-0076-4 [13] LAI T W, LIU X Y, XUE S, et al. Extension of Ergun equation for the calculation of the flow resistance in porous media with higher porosity and open-celled structure[J]. Applied Thermal Engineering, 2020, 173: 115262. [14] TIAN J Y, NI L, SONG T, et al. CFD simulation of hydrocyclone-separation performance influenced by reflux device and different vortex-finder lengths[J]. Separation and Purification Technology, 2020, 233: 116013. doi: 10.1016/j.seppur.2019.116013 -