Effect of Coupled Electromagnetic Treatment on the Thermal and Mechanical Properties of Alloy 690
-
摘要: 针对690合金传热管换热效率难以达到设计值的难题,基于仿真与实验相结合的方法,采用电磁耦合处理工艺,通过施加不同参数的电场和磁场对690合金传热管开展导热性能和力学性能的研究。结果表明,当施加的电磁场参数为1.5 V-1.5 T时,690合金传热管的导热系数提升19.6%,抗拉强度和维氏硬度也分别提升6.8%和4.3%;仿真计算的热应力比修正后的Peierls应力大一个数量级,表明电磁耦合处理能够有效驱动690合金内部位错移动;经能谱分析,电磁耦合能场能够促进晶间碳化物(M23C6)的析出,从而实现690合金传热管导热系数的提升。本工作充分验证了电磁耦合处理工艺提升690合金传热管导热性能的可行性,可以有效提高690合金传热管的换热效率。Abstract: To solve the problem that the heat exchange efficiency of alloy 690 heat transfer tube is difficult to reach the design value, this paper adopts the method of combining simulation and experiment, employs the coupled electromagnetic treatment to study the thermal conductivity and mechanical properties of alloy 690 heat transfer tube by applying electric and magnetic fields with different parameters. The results show that when the applied electromagnetic field parameters are 1.5 V-1.5 T, the thermal conductivity of alloy 690 heat transfer tube is increased by 19.6%, and the tensile strength and Vickers hardness are also increased by 6.8% and 4.3%, respectively. The thermal stress calculated by simulation is an order of magnitude larger than the modified Peierls stress, which shows that the coupled electromagnetic treatment can effectively drive the internal dislocation movement of alloy 690. EDS results showed that the coupled electromagnetic energy field could promote the precipitation of intergranular carbides (M23C6), thereby improving the thermal conductivity of alloy 690 heat transfer tubes. In this paper, the feasibility of the coupled electromagnetic treatment to improve the thermal conductivity of alloy 690 heat transfer tube is fully verified, and the heat exchange efficiency of alloy 690 heat transfer tube can be effectively improved.
-
表 1 690合金的物理参数
Table 1. Physical Parameters of Alloy 690
物理参数 参数值 密度/(g·cm−3) 8.19 比热容/(J$ · $kg−1$ · $K−1) 471 拉伸强度/MPa ≥586 屈服强度/MPa 276~345 弹性模量/GPa 211 泊松比 0.289 电阻率/(10−8·Ω·m)(100℃) 116 导热系数/(W·m−1·K−1)(100℃) 13.5 磁导率/(H·m−1)(200 Oe) 1.001 融化温度范围/℃ 1343~1377 表 2 690合金化学成分
Table 2. Chemical Composition of Alloy 690
元素 Cr Fe Cu C Co Ti Al Mn Si P S Ni 质量
分数/%29.78 9.80 0.11 0.02 0.04 0.20 0.20 0.20 0.05 0.01 0.01 其余 表 3 电磁耦合处理690合金工艺参数
Table 3. Coupled Electromagnetic Treatment Parameters for Alloy 690
实验编号 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 电场强度/V 0 1.5 1.5 1.5 1.5 1.5 0 0.5 1.0 2.0 2.5 磁场强度/T 0 0 0.5 1.0 1.5 2.0 1.5 1.5 1.5 1.5 1.5 -
[1] 张璎. 核电站工作原理及发展趋势[J]. 装备机械,2010(4): 2-7. [2] 宋志刚. 中国压水堆蒸汽发生器传热管的研究及国产化[J]. 钢铁研究学报,2013, 25(8): 1-5. [3] 郭建亭. 高温合金在能源工业领域中的应用现状与发展[J]. 金属学报,2010, 46(5): 513-527. [4] 朱海涛,吴青松,秦伟健,等. 690合金传热管内外壁“细晶”组织的成因及控制[J]. 钢管,2014, 43(6): 14-17. doi: 10.3969/j.issn.1001-2311.2014.06.004 [5] 杨亮,董建新,何智勇,等. 690合金管冷轧及退火处理过程中的组织演变[J]. 材料热处理学报,2011, 32(12): 98-104. [6] ZHANG Q W, HUANG K L, WANG J, et al. Effect of pulse electromagnetic coupling treatment on thermal conductivity of WC-8Co cemented carbide[J]. Ceramics International, 2021, 47(16): 22683-22692. [7] SUN K E, ZENG B, QIN Y, et al. An electromagnetic coupling treatment for improving the cutting performance of cemented carbide-coated tools[J]. Journal of Asian Ceramic Societies, 2023, 11(4): 504-516. [8] ZHANG Q W, WANG X T, QIN Y, et al. Improving thermal conductivity of a nickel-based alloy through advanced electromagnetic coupling treatment[J]. Journal of Materials Research and Technology, 2022, 21: 4708-4723. [9] ASHI L, XIE Z Q, SUN H F, et al. Effect of electromagnetic coupling treatment on the residual stress relief and mechanical properties of 7050 aluminum alloy[J]. Journal of Materials Science, 2023, 58(29): 12097-12117. [10] ASTM International. Standard Test Method for Thermal Diffusivity by the Flash Method:ASTM E1461-13[S]. West Conshohocken: ASTM International. 2013: 1-11. [11] 全国钢标准化技术委员会. 金属材料 拉伸试验 第1部分:室温试验方法: GB/T 228.1-2021[S]. 北京: 中国标准出版社, 2021: 53-55.全国钢标准化技术委员会. 金属材料 拉伸试验 第1部分:室温试验方法: GB/T 228.1-2021[S]. 北京: 中国标准出版社, 2021: 53-55. [12] 袁家伟. 高导热Mg-Zn-Mn合金及其性能研究[D]. 北京: 北京有色金属研究总院,2013. [13] NABARRO F R N. Dislocations in a simple cubic lattice[J]. Proceedings of the Physical Society, 1947, 59(2): 256-272. [14] LU G, KIOUSSIS N, BULATOV V V, et al. Generalized-stacking-fault energy surface and dislocation properties of aluminum[J]. Philosophical Magazine Letters, 2000, 62(5): 3099-3108. [15] LU G, KIOUSSIS N, BULATOV V V, et al. The Peierls-Nabarro model revisited[J]. Philosophical Magazine Letters, 2000, 80(10): 675-682. [16] SONG H C, GAO H J, WU Q, et al. Effects of segmented thermal-vibration stress relief process on residual stresses, mechanical properties and microstructures of large 2219 Al alloy rings[J]. Journal of Alloys and Compounds, 2021, 886: 161269. [17] HOU M D, LI K J, LI X G, et al. Effects of pulsed magnetic fields of different intensities on dislocation density, residual stress, and hardness of Cr4Mo4V steel[J]. Crystals, 2020, 10(2): 115. [18] XIONG H Q, ZHOU Y X, YANG P, et al. Effects of cryorolling, room temperature rolling and aging treatment on mechanical and corrosion properties of 7050 aluminum alloy[J]. Materials Science and Engineering: A, 2022, 853: 143764. [19] 赵海燕,王娟,宋志刚. 690合金晶粒尺寸控制影响因素研究[J]. 特钢技术,2020, 26(1): 15-21. [20] CHEN J K, HUNG H Y, WANG C F, et al. Effects of casting and heat treatment processes on the thermal conductivity of an Al-Si-Cu-Fe-Zn alloy[J]. International Journal of Heat and Mass Transfer, 2017, 105: 189-195. doi: 10.1016/j.ijheatmasstransfer.2016.09.090 [21] PAYANDEH M, SJÖLANDER E, JARFORS A E W, et al. Influence of microstructure and heat treatment on thermal conductivity of rheocast and liquid die cast Al-6Si-2Cu-Zn alloy[J]. International Journal of Cast Metals Research, 2016, 29(4): 202-213. doi: 10.1080/13640461.2015.1125990 [22] 夏爽. 690合金中晶界特征分布及其演化机理的研究[D]. 上海: 上海大学,2008. [23] 夏爽,周邦新,陈文觉. 690合金的晶界特征分布及其对晶间腐蚀的影响[J]. 电子显微学报,2008, 27(6): 461-468. doi: 10.3969/j.issn.1000-6281.2008.06.008 [24] 邱成军,王元化,王义杰. 材料物理性能[M]. 哈尔滨: 哈尔滨工业大学出版社,2003: 278. [25] PEET M J, HASAN H S, BHADESHIA H K D H. Prediction of thermal conductivity of steel[J]. International Journal of Heat and Mass Transfer, 2011, 54(11-12): 2602-2608. doi: 10.1016/j.ijheatmasstransfer.2011.01.025 [26] SIMMONS J C, CHEN X B, AZIZI A, et al. Influence of processing and microstructure on the local and bulk thermal conductivity of selective laser melted 316L stainless steel[J]. Additive Manufacturing, 2020, 32: 100996. doi: 10.1016/j.addma.2019.100996 -