Large-eddy Simulation of Temperature Fluctuation Characteristics of Lead Bismuth Eutectic Alloy in Triple Jet
-
摘要: 为获得流动参数对铅铋合金温度振荡的影响,利用数值模拟的方法对三喷口模型中的铅铋合金温度振荡特性进行了研究。首先,基于不同湍流模型对钠流体温度振荡现象进行数值模拟,计算结果表明大涡模拟方法可准确分析出温度振荡现象,其适用于液态金属温度振荡数值分析。然后,采用大涡模拟方法对三喷口模型中的铅铋合金温度振荡进行数值计算,得到了各监测点的温度随时间的变化。最后,对比了中间出口上方监测点在不同流速比、不同流速工况下温度振荡幅度和频率,分析了不同流体速度和流速比对各监测点温度振荡特性的影响。研究结果表明,温度振荡的幅度和频率均随着流速增加而增大,主要是由于速度的增加使湍流作用增强,增加了流体流动的无序性,从而使温度振荡的幅度和频率增大。本研究得到的铅铋合金温度振荡特性可为后续铅铋快堆温度振荡研究提供参考。Abstract: In order to study influence of velocity on LBE temperature fluctuations, temperature fluctuation characteristics of lead bismuth eutectic alloy in triple jet was simulated. Firstly, three turbulent models were used to analyze temperature fluctuations characteristics of sodium in triple jet. The temperature and velocity fields at different times were evaluated and temperature fluctuation characteristics were predicted successfully by large eddy simulation (LES) and LES is suitable for analyzing temperature fluctuations characteristics of liquid metal. Secondly, LES was employed to simulate temperature fluctuation characteristics of lead bismuth eutectic alloy(LBE) in triple jet at different velocities and velocity ratios. Finally, by analyzing the influence of different velocity ratios and different velocities, it is found that the amplitude and frequency of temperature fluctuation increases as the velocity increases due to that increase of velocity enhanced turbulence. The temperature fluctuation characteristics of LBE alloy in triple jet were analyzed and it could be anticipated to support the subsequent investigation of temperature fluctuations of LBE cooled fast reactor.
-
Key words:
- Temperature fluctuation /
- Large-eddy Simulation /
- Triple jet model
-
表 1 监测点位置
Table 1. Monitoring Point Position
监测点序号 X/mm Y/mm Z/mm A1 15 0 60 A2 15 0 100 A3 15 0 150 A4 15 0 200 B1 35 0 60 B2 35 0 100 B3 35 0 150 B4 35 0 200 C1 65 0 60 C2 65 0 100 C3 65 0 150 C4 65 0 200 表 2 不同工况的边界条件参数
Table 2. Boundary Condition of Different Cases
工况 两侧喷口 中间喷口 热流体流速
$ {V}_{\mathrm{h}} $/(m·s−1)$ {T}_{\mathrm{h}} $/K 冷流体流速
$ {V}_{\mathrm{c}} $/(m·s−1)$ {T}_{\mathrm{c}} $/K 1 0.5 620.85 0.5 577.65 2 0.5 620.85 0.25 577.65 3 0.25 620.85 0.5 577.65 4 1 620.85 1 577.65 5 2 620.85 2 577.65 6 2 620.85 1 577.65 -
[1] 吴宜灿,柏云清,宋勇,等. 中国铅基研究反应堆概念设计研究[J]. 核科学与工程,2014, 34(2): 201-208. [2] 彭天骥,顾龙,王大伟,等. 中国加速器驱动嬗变研究装置次临界反应堆概念设计[J]. 原子能科学技术,2017, 51(12): 2235-2241. doi: 10.7538/yzk.2017.51.12.2235 [3] WANG C L, WEI S Y, TIAN W X, et al. RETRACTED: core design and analysis of a lead-bismuth cooled small modular reactor[J]. Annals of Nuclear Energy, 2019, 133: 511-518. doi: 10.1016/j.anucene.2019.06.019 [4] 刘紫静,赵鹏程,张斌,等. 超长寿命小型自然循环铅铋快堆堆芯概念设计研究[J]. 原子能科学技术,2020, 54(7): 1254-1265. doi: 10.7538/yzk.2019.youxian.0720 [5] ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011 [6] GELINEAU O, ESCARAVAGE C, SIMONEAU J P, et al. High cycle thermal fatigue – experience and state of the art in French LMFRs[C]//16th International Association for Structural Mechanics in Reactor Technology. Washington: IASMiRT, 2001: 12-17. [7] CHELLAPANDI P, VELUSAMY K. Thermal hydraulic issues and challenges for current and new generation FBRs[J]. Nuclear Engineering and Design, 2015, 294: 202-225. doi: 10.1016/j.nucengdes.2015.09.012 [8] ROELOFS F, GERSCHENFELD A, TARANTINO M, et al. Thermal-hydraulic challenges in liquid-metal-cooled reactors-ScienceDirect[J]. Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors, 2019: 17-43. [9] TOKUHIRO A, KIMURA N. An experimental investigation on thermal striping: mixing phenomena of a vertical non-buoyant jet with two adjacent buoyant jets as measured by ultrasound Doppler velocimetry[J]. Nuclear Engineering and Design, 1999, 188(1): 49-73. doi: 10.1016/S0029-5493(99)00006-0 [10] KIMURA N, MIYAKOSHI H, KAMIDE H. Experimental investigation on transfer characteristics of temperature fluctuation from liquid sodium to wall in parallel triple-jet[J]. International Journal of Heat and Mass Transfer, 2007, 50(9-10): 2024-2036. doi: 10.1016/j.ijheatmasstransfer.2006.09.030 [11] CHOI S K, KIM S O. Evaluation of turbulence models for thermal striping in a triple jet[J]. Journal of Pressure Vessel Technology, 2007, 129(4): 583-592. doi: 10.1115/1.2767337 [12] ANGELI P E. Verification and validation of LES of a triple parallel jet flow in the context of a thermal striping investigation[J]. Nuclear Engineering and Design, 2019, 353: 110210. doi: 10.1016/j.nucengdes.2019.110210 [13] TENCHINE D, VANDROUX S, BARTHEL V, et al. Experimental and numerical studies on mixing jets for sodium cooled fast reactors[J]. Nuclear Engineering and Design, 2013, 263: 263-272. doi: 10.1016/j.nucengdes.2013.06.001 [14] ERRICO O, STALIO E. Direct numerical simulation of turbulent forced convection in a wavy channel at low and order one Prandtl number[J]. International Journal of Thermal Sciences, 2014, 86: 374-386. doi: 10.1016/j.ijthermalsci.2014.07.021 [15] Chacko S , Chung Y M , Choi S K , et al. Large-eddy simulation of thermal striping in unsteady non-isothermal triple jet[J]. International Journal of Heat and Mass Transfer, 2011, 54(19): 4400-4409. doi: 10.1016/j.ijheatmasstransfer.2011.05.002 -