Exergy Analysis of Solar-Nuclear-Storage Hybrid System under Different Operation Strategies
-
摘要: 为解决传统压水堆核电机组难以在未来参与电网调峰的问题,提出了一种耦合太阳能和核能的光-核-储综合能源系统,利用热力系统仿真软件EBSILON搭建了系统模型,研究了设计工况下系统的热力学性能并进行了系统在不同运行策略下的㶲分析。不同运行策略下的㶲分析研究表明,系统中㶲损最大的3个设备依次为蒸汽发生器、集热场和汽轮机高压缸第一级,三者㶲损之和接近总㶲损的50%。与此同时,集热场的㶲效率主要受设计法向太阳直接辐射量变化影响,在不同运行策略下的最大变化量为2%,电加热器的㶲效率基本不变。Abstract: To solve the problem that traditional PWR nuclear power units cannot meet the need to participate in grid peak regulation in the future, an Solar-Nuclear-Storage Hybrid System that couples solar energy and nuclear energy was put forward. A system model was built with thermal system simulation software EBSILON, where exergy analysis of the system under different operation strategies was carried out to study the thermodynamic performance of the system under design conditions. The exergy analysis and research under different operation strategies show that the three equipment with the highest exergy losses in the system are steam generator, solar field and steam turbine high pressure cylinder first stage, and the exergy loss of the three equipment in total is close to 50% of the total exergy loss. At the same time, the exergic efficiency of solar field is mainly affected by the change of direct normal irradiance. The exergic efficiency of electric heater is basically unchanged with the maximum change of 2% under different operation strategies.
-
表 1 ET-150型集热场参数
Table 1. Parameters of ET-150 Collector
参数 数值 长度/m 148.50 总光圈宽度/m 5.77 平均焦距/m 1.71 净面积因子 1 理论峰值光学效率 0.75 镜面清洁系数 0.985 终端损失系数 0.99 表 2 模型验证结果
Table 2. Results of Model Verification
关键参数 系统设计参数 EBSILON 相对误差/% 主蒸汽温度/℃ 280.1 280.0 −0.04 主蒸汽压力/MPa 6.43 6.428 −0.03 主蒸汽流量/(kg·s−1) 1613.4 1613.1 −0.01 一级抽汽/(kg·s−1) 128.8 128.9 0.08 二级抽汽/(kg·s−1) 87.0 88.0 1.22 给水温度/℃ 226.1 226.1 −0.00 再热蒸汽温度/℃ 268.1 268.2 0.04 电功率/MW 1086.0 1085.5 −0.05 堆芯热功率/MW 2903.0 2902.8 −0.01 表 3 光-核-储综合能源系统中光热子系统的性能参数
Table 3. Performance Parameters of the Photothermal Subsystem in the Solar-Nuclear-Storage System
参数 数值 过热器功率/MW 49.8 过热器热效率/% 96% 储热系统热效率/% 99% 设计D/(W·m2) 800 设计D的有效时长/h 8 集热场的净热功率/MW 157.7 热罐温度/℃ 383.0 冷罐温度/℃ 285.0 集热场总采光口面积/m2 311318 等效满负荷时长/h 16 额定储热容量/(MW·h) 1381.6 熔盐质量/t 35073.6 表 4 设计工况下光-核-储综合能源系统与CPR1000比较
Table 4. Comparison between Solar-Nuclear-Storage System and CPR1000 Unit under Design Conditions
参数 CPR1000
机组光-核-储综合
能源系统绝对变化量 主蒸汽温度/℃ 280.00 285.00 5.00 主蒸汽压力/MPa 6.43 6.43 0.00 主蒸汽流量/(kg·s−1) 1613.30 1612.95 −0.35 给水温度/℃ 226.06 226.06 0.00 给水压力/MPa 8.33 8.34 0.01 给水流量/(kg·s−1) 1613.30 1612.95 −0.35 再热蒸汽温度/℃ 268.15 268.14 0.01 再热蒸汽流量/(kg·s−1) 1057.52 1074.23 16.71 堆芯热功率/MW 2902.70 2902.31 −0.4 光热发电功率/MW 24.61 高压缸做功量/MW 384.39 393.64 9.24 低压缸做功量/MW 716.03 727.30 11.27 总电功率/MW 1084.54 1104.80 20.26 太阳能发电占比/% 0 2.23 光电转化效率/% 29.65 总发电效率/% 37.36 37.01 −0.35 -
[1] 李强,陈擎,王继斌,等. 世界铀资源现状与我国核电发展资源保障的对策建议[J]. 中国矿业,2023, 32(3): 1-9. doi: 10.12075/j.issn.1004-4051.2023.03.015 [2] CHEN J, GARCIA H E, KIM J S, et al. Operations optimization of nuclear hybrid energy systems[J]. Nuclear Technology, 2016, 195(2): 143-156. [3] WANG G, YIN J H. Design and exergy evaluation of a novel parabolic trough solar-nuclear combined system[J]. Annals of Nuclear Energy, 2020, 144: 107573. [4] MONNERIE N, SCHMITZ M, ROEB M, et al. Potential of hybridisation of the thermochemical hybrid-sulphur cycle for the production of hydrogen by using nuclear and solar energy in the same plant[J]. International Journal of Nuclear Hydrogen Production and Applications, 2011, 2(3): 178-201. [5] WANG G, WANG C, CHEN Z S, et al. Design and performance evaluation of an innovative solar-nuclear complementarity power system using the S–CO2 Brayton cycle[J]. Energy, 2020, 197: 117282. doi: 10.1016/j.energy.2020.117282 [6] 张耀明,邹宁宇. 太阳能热发电技术[M]. 2版. 北京: 化学工业出版社,2020: 308-310. [7] 张学镭,梁建雄,王普,等. 基于S-CO2布雷顿循环的太阳能发电储能一体化系统性能分析[J]. 动力工程学报,2024, 44(8): 1205-1215. doi: 10.19805/j.cnki.jcspe.2024.230406. [8] XU C, KHAN M S, KONG F L, et al. Conceptual design and optimization of cogeneration system based on small modular lead-cooled fast reactor[J]. Energy Science & Engineering, 2021, 9(10): 1688-1702. [9] 国家市场监督管理总局,国家标准化管理委员会. 太阳能光热发电站 术语: GB/T 40104-2021[S]. 北京: 中国标准出版社,2021: 1-26. [10] 王志峰. 太阳能热发电站设计[M]. 北京: 化学工业出版社,2014: 161-181. [11] 全鸣玉. 基于有机朗肯循环的太阳能地热能联合发电系统研究[D]. 长春: 吉林大学,2021. [12] 庞仕承. 基于流固耦合方法的熔盐储热系统运行性能研究[D]. 吉林: 东北电力大学,2023. -