Study on the Impact of Different Behavioral Levels in Digital Main Control Rooms of Nuclear Power Plants on Operators’ Inhibition of Return Effect
-
摘要: 本研究旨在探究核电厂数字化主控室中不同行为水平(基于技能型和基于规则型)对操纵员返回抑制(IOR)效应的影响,以及工作负荷与IOR效应之间的关系。通过仿真验证平台模拟典型事故场景,对比分析了不同行为水平的IOR效应和工作负荷。研究发现,不同行为水平对操纵员的IOR效应有显著影响,技能型行为在监视核电厂状态时能有效摆脱非目标信息的干扰;规则型行为容易受到无关信息的干扰,且工作负荷与IOR效应呈正相关。本研究结果可为核电厂操纵员培训与人员职能分配提供理论和数据支持。Abstract: This study aims to explore the effects of different behavior levels (skill-based and rule-based) on the Inhibition of Return (IOR) of operators in a digital main control room of nuclear power plant, as well as the relationship between workload and IOR effect. The typical accident scenarios were simulated through a simulation platform, and the IOR effects and workload of operators with different behavior levels were compared and analyzed. The study found that different behavior levels have a significant impact on the IOR effect of operators. Skill-based behavior is effective in avoiding interference from non-target information during nuclear power plant status monitoring; while rule-based behavior is easily distracted by irrelevant information, with workload showing a positive correlation with IOR effect. This research can provide theoretical and data support for training nuclear power plant operators and personnel function allocation.
-
Key words:
- Nuclear power plant /
- Skill-based behavior /
- Rule-based behavior /
- Inhibition of return(IOR) /
- Workload
-
表 1 操作时间与错误率独立样本T检验
Table 1. Independent Sample T-test for Operation Time and Error Rate
T检验对象 F $p $ T统计量观测值 $p $ (双侧) 错误率 方差相等 12.656 0.003 −1.611 0.127 方差不相等 −1.572 0.134 平均操作时间 方差相等 0.288 0.712 −4.701 0 方差不相等 −4.701 0 F—拟合的程度值;p—检验的显著水平。 表 2 两组被试人员反应时间的多因素方差分析
Table 2. Multivariate Analysis of Variance on Reaction Time of the Two Groups of Subjects
组别 F P 技能型 SOA 28.022 0 靶子位置 1.933 0.180 SOA-靶子位置 6.445 0.002 规则型 SOA 17.543 0 靶子位置 8.767 0.004 SOA-靶子位置 0.723 0.532 表 3 两组被试人员的平均反应时间和抑制效应量
Table 3. Average Reaction Time and Inhibiting Effect of the Two Groups of Subjects
组别 线索化位置 非线索化位置 抑制效应量 条件1 条件2 条件3 条件1 条件2 条件3 条件1 条件2 条件3 技能型 498.70 476.90 468.27 511.72 463.75 450.63 −13.02 13.15 +17.64 规则型 482.12 470.51 463.08 476.34 452.56 447.63 +5.78 +17.95 +15.45 条件1—SOA水平=0.4 s;条件2—SOA水平=0.7 s;条件3—SOA水平=1.0 s。 -
[1] POSNER M I, COHEN Y. Components of visual orienting[J]. Attention and performance X: Control of Language Processes, 1984(32): 531-556. [2] KLEIN R M, MACINNES W J. Inhibition of return is a foraging facilitator in visual search[J]. Psychological Science, 1999, 10(4): 346-352. doi: 10.1111/1467-9280.00166 [3] 胡鸿. 数字化核电厂主控室操纵员监视行为及其可靠性研究[D]. 衡阳: 南华大学,2016. [4] SUN J, FENG B, XU W B. Particle swarm optimization with particles having quantum behavior[C]//Proceedings of the 2004 Congress on Evolutionary Computation. Portland: IEEE, 2004: 325-331. [5] 刘艳艳,李杰,赵起超,等. 三维动静态场景下返回抑制的扩散[J]. 心理与行为研究,2022, 20(1): 22-28. [6] 鲁亮. 驾驶疲劳对警觉注意的影响[D]. 漳州: 闽南师范大学,2017. [7] 王芳,娄振山,朱霞. 飞行员返回抑制的时程特征及其与飞行绩效相关的研究[J]. 航天医学与医学工程,2012, 25(5): 345-349. [8] 刘扬,杨伟,郑逢斌. 视觉选择性注意的认知神经机制与显著性计算模型[J]. 小型微型计算机系统,2014, 35(3): 584-589. [9] 刘义杰,张湘平,谭霜. 基于视觉注意机制的交通路标检测方法[J]. 计算机应用研究,2012, 29(10): 3960-3963,3975. [10] 胡鸿,张力,蒋建军,等. 核电厂数字化人-机界面监视转移路径预测方法及其应用[J]. 核动力工程,2014, 35(3): 105-110. [11] 张力,李林峰,卢长申,等. 数字化核电厂主控室操纵员监视行为转移规律研究[J]. 核动力工程,2013, 34(6): 92-96. [12] 张力,胡鸿,李鹏程,等. 数字化核电厂操纵员监视行为可靠性分析及其应用[J]. 原子能科学技术,2015, 49(5): 921-929. [13] 贺雯. 数字化核电厂操纵员监视行为注意力有效性检测实验研究[D]. 衡阳: 南华大学,2012. [14] SWAIN A D, GUTTMANN H E. Handbook of human reliability analysis with emphasis on nuclear power plant applications: NUREG/CR-1278[R]. Washington: Nuclear Regulatory Commission, 1980. [15] COOPER S E, RAMEY-SMITH A M, WREATHALL J, et al. A technique for human error analysis (ATHEANA): NUREG/CR-6350[R]. Washington: Nuclear Regulatory Commission, 1996. [16] XING J, CHANG Y J, DE JESUS SEGARRA J. The general methodology of an integrated human event analysis system (IDHEAS-G): NUREG-2198[R]. Washington: Nuclear Regulatory Commission, 2021. [17] MANZEY D, LORENZ B, POLJAKOV V. Mental performance in extreme environments: results from a performance monitoring study during a 438-day spaceflight[J]. Ergonomics, 1998, 41(4): 537-559. doi: 10.1080/001401398186991 [18] YENN T C, CHUANG C Y, HSU C C, et al. An experience study for advanced MCR of Lungmen project with human factors regulations: NUREG-0711[C]//18th International Conference on Nuclear Engineering. Xi’an: ASME, 2011. [19] RASMUSSEN J. Information processing and human-machine interaction: an approach to cognitive engineering[M]. New York: North-Holland, 1986: 251. [20] 蒋英杰,孙志强,宫二玲,等. 一种认知行为模式的概率化确定方法[J]. 计算技术与自动化,2011, 30(1): 75-80. [21] WOODS D D, POPLE JR H E, ROTH E M. Cognitive environment simulation: a tool for modeling intention formation for human reliability analysis[J]. Nuclear Engineering and Design, 1992, 134(2-3): 371-380. doi: 10.1016/0029-5493(92)90153-M [22] 沈学泽,张力,青涛,等. 核电厂事故规程信息化系统对操纵员工作负荷的影响研究[J]. 工业工程,2022, 25(6): 146-151,159. [23] 国家核安全局. 核动力厂运行安全规定: HAF103[S]. 北京: 国家核安全局,2004: 1-25. [24] 姚明亮,祁神军,成家磊,等. 工作负荷与建筑工人不安全行为的结构关系研究[J]. 建筑经济,2019, 40(1): 30-35. [25] MAYLOR E A, HOCKEY R. Effects of repetition on the facilitatory and inhibitory components of orienting in visual space[J]. Neuropsychologia, 1987, 25(1A): 41-54. [26] LUPIÁÑEZ J, MILÁN E G, TORNAY F J, et al. Does IOR occur in discrimination tasks? yes, it does, but later[J]. Perception & Psychophysics, 1997, 59(8): 1241-1254. -