Study on Quantification of Parameter Uncertainty in Reflooding Model Based on Random Forest Algorithm
-
摘要: 为了评估复杂事故现象物理模型参数(输入)的不确定性,提出了基于随机森林算法结合粒子群优化Kriging(PSO-Kriging)代理模型和Sheather-Jones优化核密度估计法(KDE-SJ)非参数统计的反向不确定性量化方法,并应用于大破口事故再淹没现象的模型评估。通过将系统程序的计算结果(输出)与Flooding Experiments with Blocked Arrays(FEBA)实验数据的一致性程度作为随机森林算法的分类标准,得到了模型参数的概率密度分布。验证结果表明在概率密度分布上随机抽样93组计算得到的95%不确定度带可以完全包络实验数据,但利用众数或均值对模型的标定效果可能不如贝叶斯方法得到的最大后验均值。Abstract: In order to assess the uncertainty of physical models (inputs) of complex accidents, an inverse uncertainty quantification method based on Random Forest algorithm combined with PSO-Kriging surrogate model and KDE-SJ nonparametric statistics is proposed, and it is applied to the model assessment of reflooding in large breach accidents. The probability density distributions of the model parameters were obtained through the degree of consistency between the calculation results (output) of the system program and the FEBA experimental data as a classification criterion for the Random Forest algorithm. The validation results show that the 95% uncertainty bands obtained by randomly sampling 93 groups of calculations on the probability density distributions can completely envelope the experimental data, but the calibration effect of the model using mode or mean may not be as good as the maximum posterior mean obtained by Bayesian method.
-
表 1 FEBA选择工况的初始和边界条件
Table 1. Initial and Boundary Conditions for Selected FEBA Operating Conditions
工况编号 进口流速/(cm·s−1) 系统压力/MPa 进口冷却水温度/℃ 棒束功率/kW 0 s 瞬态 223 3.8 0.22 36 200 120% ANS衰变热标准 216 3.8 0.41 37 200 120% ANS衰变热标准 220 3.8 0.62 37 200 120% ANS衰变热标准 214 5.8 0.41 37 200 120% ANS衰变热标准 222 5.8 0.62 36 200 120% ANS衰变热标准 表 2 初始选定的输入参数及其先验范围
Table 2. Initially Selected Input Parameters and Their Priori Ranges
编号 参数名称 先验范围 P1 系统压力 0.99~1.01 P2 进口流速 0.98~1.02 P3 进口水温/℃ ±10 P4 初始加热棒壁温/℃ ±10 P5 加热棒功率 0.99~1.01 P6 NiCr 导热率 0.95~1.05 P7 NiCr 体积热容 0.95~1.05 P8 MgO 导热率 0.8~1.2 P9 MgO体积热容 0.8~1.2 P10 过渡沸腾传热系数(壁面对液相) 0.2~ 3.0 P11 过渡沸腾传热系数(壁面对汽相) 0.2~3.0 P12 膜态沸腾传热系数(壁面对液相) 0.2~3.0 P13 膜态沸腾传热系数(壁面对汽相) 0.1~2.5 P14 壁面对液相的摩擦系数(全局) 0.1~4.0 P15 壁面对汽相的摩擦系数(全局) 0.1~4.0 P16 反环状流相间传热系数(相界面对液相) 0.2~2.0 P17 反环状流相间传热系数(相界面对汽相) 0.2~2.0 P18 反塞状流相间传热系数(相界面对液相) 0.2~2.0 P19 反塞状流相间传热系数(相界面对汽相) 0.2~2.0 P20 弥散流相间传热系数(相界面对液相) 0.2~2.0 P21 弥散流相间传热系数(相界面对汽相) 0.2~2.0 P22 弥散流相间摩擦系数 0.2~4.0 P23 最小液滴直径/mm (液滴直径基准值为1.5 mm) 0.5~2.5 P24 润湿前沿判断温度/K(温度基准值为710 K) ±20 P1、P2、P5、P6、P7、P8、P9参数的先验范围均为该参数在系统标准值的系数变化范围 表 3 构建决策树的自定义特征
Table 3. Customized Features for Building Decision Trees
编号 特征 编号 特征 特征1 包壳3315 mm处最高温度 特征7 包壳3315 mm处润湿时间 特征2 包壳2770 mm处最高温度 特征8 包壳2770 mm处润湿时间 特征3 包壳2225 mm处最高温度 特征9 包壳2225 mm处润湿时间 特征4 包壳1135 mm处最高温度 特征10 包壳1680 mm处润湿时间 特征5 包壳590 mm处最高温度 特征11 包壳1135 mm处润湿时间 特征6 包壳1680 mm处最高温度 特征12 包壳590 mm处润湿时间 表 4 A类参数的统计均值和标准差
Table 4. Statistical Means and Standard Deviations of Class A Parameters
参数 均值 标准差 过渡沸腾传热系数(壁面对气相) 1.5199 0.77636 膜态沸腾传热系数(壁面对液相) 1.5914 0.60788 弥散流相间传热系数 1.0425 0.65900 弥散流相间摩擦系数 2.3362 1.03410 -
[1] 李冬. 最佳估算模型的不确定性量化方法研究及再淹没模型评估的应用[D]. 上海: 上海交通大学,2017. [2] WU X, XIE Z Y, ALSAFADI F, et al. A comprehensive survey of inverse uncertainty quantification of physical model parameters in nuclear system thermal-hydraulics codes[J]. Nuclear Engineering and Design, 2021, 384: 111460. doi: 10.1016/j.nucengdes.2021.111460 [3] KOVTONYUK A. Development of methodology for evaluation of uncertainties of system thermal-hydraulic codes’ input parameters[D]. Pisa: Università di Pisa, 2014. [4] SKOREK T. Input uncertainties in uncertainty analyses of system codes: quantification of physical model uncertainties on the basis of CET (combined effect tests)[J]. Nuclear Engineering and Design, 2017, 321: 301-317. doi: 10.1016/j.nucengdes.2016.10.028 [5] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1-22. doi: 10.1111/j.2517-6161.1977.tb01600.x [6] GELMAN A, CARLIN J B, STERN H S, et al. Bayesian data analysis[M]. New York: Chapman and Hall/CRC, 2013: 1-675. [7] DAMBLIN G, GAILLARD P. A Bayesian framework for quantifying the uncertainty of physical models integrated into thermal-hydraulic computer codes[C]//Proceedings of the Best Estimate Plus Uncertainty International Conference. Lucca: BEUP, 2018. [8] DAMBLIN G, GAILLARD P. Bayesian inference and non-linear extensions of the CIRCE method for quantifying the uncertainty of closure relationships integrated into thermal-hydraulic system codes[J]. Nuclear Engineering and Design, 2020, 359: 110391. doi: 10.1016/j.nucengdes.2019.110391 [9] WU X, KOZLOWSKI T, MEIDANI H, et al. Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian Process, part 2: application to TRACE[J]. Nuclear Engineering and Design, 2018, 335: 417-431. doi: 10.1016/j.nucengdes.2018.06.003 [10] WANG C, WU X, KOZLOWSKI T. Surrogate-based Bayesian calibration of thermal-hydraulics models based on PSBT time-dependent benchmark data[C]//Proceedings of the ANS Best Estimate Plus Uncertainty International Conference. Lucca, Italy: BEPU, 2018. [11] WANG C, WU X, KOZLOWSKI T. Gaussian process–based inverse uncertainty quantification for trace physical model parameters using steady-state PSBT benchmark[J]. Nuclear Science and Engineering, 2019, 193(1-2): 100-114. doi: 10.1080/00295639.2018.1499279 [12] WANG C, WU X, KOZLOWSKI T. Inverse uncertainty quantification by hierarchical Bayesian inference for trace physical model parameters based on BFBT benchmark[C]//American Nuclear Society. Proceedings of NURETH-2019. Portland, Oregon, USA: American Nuclear Society, 2019. [13] DOMITR P, WŁOSTOWSKI M. The use of machine learning for inverse uncertainty quantification in TRACE code based on Marviken experiment[J]. Nuclear Engineering and Design, 2021, 384: 111498. doi: 10.1016/j.nucengdes.2021.111498 [14] DOMITR P, WŁOSTOWSKI M, LASKOWSKI R, et al. Comparison of inverse uncertainty quantification methods for critical flow test[J]. Energy, 2023, 263: 125640. doi: 10.1016/j.energy.2022.125640 [15] 邵旻晖. 决策树典型算法研究综述[J]. 电脑知识与技术,2018, 14(8): 175-177. [16] 曹正凤. 随机森林算法优化研究[D]. 北京: 首都经济贸易大学,2014. [17] WANG N, LI D, PENG C, et al. INVESTIGATION OF SURROGATE MODEL FOR UNCERTAINTY QUANTIFICATION OF NUCLEAR SYSTEM[C]//The Proceedings of the International Conference on Nuclear Engineering (ICONE) 2023.30. The Japan Society of Mechanical Engineers, 2023: 1085. [18] 李冬,王念峰.基于再淹没现象的RBF神经网络和Kriging的代理模型应用及误差分析[J].上海电力大学学报,2022, 38(03): 269-273.李冬, 王念峰.基于再淹没现象的RBF神经网络和Kriging的代理模型应用及误差分析[J].上海电力大学学报, 2022, 38(03): 269-273. [19] IAEA. Status of small reactor designs without on-site refuelling: IAEA-TECDOC-CD-1536[R]. Vienna: International Atomic Energy Agency, 2007. [20] MEHOLIC M J. The development of a non-equilibrium dispersed flow film boiling heat transfer modeling package[D]. State College: The Pennsylvania State University, 2011. [21] BERAR O A, PROŠEK A, MAVKO B. RELAP5 and TRACE assessment of the Achilles natural reflood experiment[J]. Nuclear Engineering and Design, 2013, 261(8): 306-316. [22] IHLE P, RUST K. FEBA-flooding experiments with blocked arrays: evaluation report[M]. Karlsruhe: Kernforschungszentrum Karlsruhe, 1984: 1-543. [23] WILKS S S. Determination of sample sizes for setting tolerance limits[J]. The Annals of Mathematical Statistics, 1941, 12(1): 91-96. doi: 10.1214/aoms/1177731788 -