高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温闭式回路铅铋离心泵全工况性能数值分析

罗昌余 黎义斌 马文生 杨由超 牛藤

罗昌余, 黎义斌, 马文生, 杨由超, 牛藤. 高温闭式回路铅铋离心泵全工况性能数值分析[J]. 核动力工程, 2025, 46(3): 186-194. doi: 10.13832/j.jnpe.2024.070033
引用本文: 罗昌余, 黎义斌, 马文生, 杨由超, 牛藤. 高温闭式回路铅铋离心泵全工况性能数值分析[J]. 核动力工程, 2025, 46(3): 186-194. doi: 10.13832/j.jnpe.2024.070033
Luo Changyu, Li Yibin, Ma Wensheng, Yang Youchao, Niu Teng. Numerical Analysis of the Performance of Lead-Bismuth Centrifugal Pump with High Temperature Closed Circuit under All Operating Conditions[J]. Nuclear Power Engineering, 2025, 46(3): 186-194. doi: 10.13832/j.jnpe.2024.070033
Citation: Luo Changyu, Li Yibin, Ma Wensheng, Yang Youchao, Niu Teng. Numerical Analysis of the Performance of Lead-Bismuth Centrifugal Pump with High Temperature Closed Circuit under All Operating Conditions[J]. Nuclear Power Engineering, 2025, 46(3): 186-194. doi: 10.13832/j.jnpe.2024.070033

高温闭式回路铅铋离心泵全工况性能数值分析

doi: 10.13832/j.jnpe.2024.070033
基金项目: 重庆市技术创新与应用发展专项重大项目(CSTB2024TIAD-STX0017);甘肃省研究生“创新之星”项目(2025CXZX-521)
详细信息
    作者简介:

    罗昌余(1999—),男,硕士研究生,主要从事铅铋离心泵内部流动及优化分析研究,E-mail: luochangyu2024@163.com

    通讯作者:

    黎义斌,E-mail: liyibin58@163.com

  • 中图分类号: TL334

Numerical Analysis of the Performance of Lead-Bismuth Centrifugal Pump with High Temperature Closed Circuit under All Operating Conditions

  • 摘要: 为探究闭式回路中铅铋离心泵在输送400℃液态铅铋合金(LBE)过程中的热态水力性能,采用联合简化建模的方法,将铅铋循环罐、进出口管道及铅铋离心泵进行整合建模。基于切应力运输(SST) k-ω湍流模型,得到了3种不同流量工况下泵内部的流动特性。研究发现,叶轮流道内存在不同程度的旋涡与介质受力不平衡状态有关,LBE流经叶轮流道过程中科氏力始终占据主导地位。此外,局部熵产率(EPR)主要集中于叶轮叶片的前缘与动静叶栅交界区域,并且随着流量的增加,流道内部的EPR呈现出递减的趋势。在叶轮与导叶流道中压力信号频率在93.33 Hz与116.67 Hz附近呈周期性交替变化,越接近动静叶栅交界面,小波信号强度越显著。研究成果将为今后铅铋离心泵的设计优化及性能评估提供重要的参考依据。

     

  • 图  1  铅铋离心泵闭式回路实验系统三维模型图

    Figure  1.  3D Model of Lead-Bismuth Closed-circuit Testing System

    图  2  铅铋离心泵流体域三维模型图

    Figure  2.  3D Model of Fluid Domain of Lead-Bismuth Centrifugal Pump

    图  3  铅铋离心泵闭式回路三维简化模型

    Figure  3.  3D Simplified Model of Lead-Bismuth Centrifugal Pump Closed-circuit

    图  4  铅铋离心泵流体域网格

    Figure  4.  Lead-Bismuth Centrifugal Pump Fluid Domain Grid

    图  5  网格独立性验证

    Figure  5.  Grid Independence Verification

    图  6  叶片壁面y+ 值分布

    Figure  6.  y+ Distribution of Blade Wall

    图  7  系统管路及循环储罐网格划分

    Figure  7.  Meshing for System Piping and Circulation Tank

    图  8  铅铋离心泵压力监测点示意图

    Figure  8.  Schematic Diagram of the Pressure Monitoring Points of Lead-Bismuth Centrifugal Pump

    图  9  铅铋离心泵外特性曲线

    Figure  9.  Numerical Simulation of External Characteristics of Lead-Bismuth Centrifugal Pump

    图  10  动静叶栅中间截面速度流线图

    Figure  10.  Speed Streamline Diagram of the Intermediate Section of Rotor-Stator Cascades

    图  11  叶轮内流体质点的受力分析

    Figure  11.  Analysis of Forces Acting on the Fluid Particles in the Impeller

    图  12  3种流量工况下叶轮内的Ro

    Figure  12.  Ro Inside the Impeller under Three Different Flow Conditions

    图  13  不同流量工况下动静叶栅局部EPR

    Figure  13.  Local EPR of Rotor-Stator Cascades under Different Flow Conditions

    图  14  3种流量工况下叶轮内压力的小波时频分析

    t—时间;T—信号周期。

    Figure  14.  Wavelet Analysis of Impeller Internal Pressure under Three Flow Conditions

    图  15  3种流量工况下导叶内压力的小波时频分析

    Figure  15.  Wavelet Analysis of Pressure Inside the Guide Vane under Three Flow Conditions

    表  1  铅铋离心泵额定参数

    Table  1.   Rated Parameters of Lead-Bismuth Centrifugal Pump

    参数名数值
    额定流量/(m3·h−1)8
    设计扬程/m12
    额定转速/(r·min−1)1400
    参考压力/MPa3
    叶轮叶片数4
    导叶叶片数5
    下载: 导出CSV

    表  2  两种介质物性参数

    Table  2.   Physical Properties of the Two Media

    介质名称清水(25℃)LBE(400℃)
    密度/(kg·m−3)98110201.25
    比热容/[J·(kg·K)−1]4.18143.92
    粘度/10−3 (Pa·s)11.625
    导热率/[W·(m·K)−1]0.6013.03
    表面张力/ (N·m−1)0.0720.39
    下载: 导出CSV
  • [1] ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. Innovative nuclear technology based on modular multi-purpose lead-bismuth cooled fast reactors[J]. Progress in Nuclear Energy, 2008, 50(2-6): 170-178. doi: 10.1016/j.pnucene.2007.10.025
    [2] ABRAM T, ION S. Generation-Ⅳ nuclear power: a review of the state of the science[J]. Energy Policy, 2008, 36(12): 4323-4330. doi: 10.1016/j.enpol.2008.09.059
    [3] ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011
    [4] FOLETTI C, SCADDOZZO G, TARANTINO M, et al. ENEA experience in LBE technology[J]. Journal of Nuclear Materials, 2006, 356(1-3): 264-272. doi: 10.1016/j.jnucmat.2006.05.020
    [5] MANGIALARDO A, BORREANI W, LOMONACO G, et al. Numerical investigation on a jet pump evolving liquid lead for GEN-IV reactors[J]. Nuclear Engineering and Design, 2014, 280: 608-618. doi: 10.1016/j.nucengdes.2014.09.028
    [6] BORREANI W, ALEMBERTI A, LOMONACO G, et al. Design and selection of innovative primary circulation pumps for GEN-IV lead fast reactors[J]. Energies, 2017, 10(12): 2079. doi: 10.3390/en10122079
    [7] LU Y G, WANG X L, FU Q, et al. Comparative analysis of internal flow characteristics of LBE-cooled fast reactor main coolant pump with different structures under reverse rotation accident conditions[J]. Nuclear Engineering and Technology, 2021, 53(7): 2207-2220. doi: 10.1016/j.net.2021.01.015
    [8] LU Y G, WANG Z W, ZHU R S, et al. Study on flow characteristics in LBE-cooled main coolant pump under positive rotating condition[J]. Nuclear Engineering and Technology, 2022, 54(7): 2720-2727. doi: 10.1016/j.net.2022.01.023
    [9] 王凯琳,李良星,张双雷,等. 轴流铅铋泵的设计及其水力性能分析[J]. 西安交通大学学报,2020, 54(11): 166-174.
    [10] 王岩,余红星,郭艳磊,等. 液态LBE介质轴流泵压力脉动特性数值研究[J]. 核动力工程,2020, 41(3): 202-207.
    [11] 张双雷,李良星,宋立明. 轴流铅铋泵流场分析及优化[J]. 核动力工程,2022, 43(3): 158-164.
    [12] 常杰元,黎义斌,马文生,等. 叶顶间隙结构对轴流铅铋泵叶轮磨损特性的影响[J]. 核技术,2023, 46(10): 100503. doi: 10.11889/j.0253-3219.2023.hjs.46.100503
    [13] 刘欣. 铅铋离心泵叶轮和导叶内部流动及磨损特性研究[D]. 兰州: 兰州理工大学,2023: 8-9.
    [14] 杨从新,吕天智,郭艳磊,等. 铅铋介质与清水介质在核主泵内流动对比[J]. 液压气动与密封,2023, 43(6): 11-16. doi: 10.3969/j.issn.1008-0813.2023.06.003
    [15] 邓诗雨,卢涛,邓坚,等. 液态铅铋合金湍流普朗特数及RANS模型优选[J]. 核动力工程,2023, 44(2): 98-103.
    [16] 张金凤,袁寿其,金实斌. 低比转速离心泵内流特性与水力设计[M]. 镇江: 江苏大学出版社,2021: 113-115.
    [17] FARGE T Z, JOHNSON M W. The effect of backswept blading on the flow in a centrifugal compressor impeller[C]//Proceedings of the ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. Brussels, Belgium: ASME, 1990.
    [18] KOCK F, HERWIG H. Entropy production calculation for turbulent shear flows and their implementation in CFD codes[J]. International Journal of Heat and Fluid Flow, 2005, 26(4): 672-680. doi: 10.1016/j.ijheatfluidflow.2005.03.005
    [19] GUAN H Y, JIANG W, WANG Y C, et al. Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine[J]. Renewable Energy, 2021, 168: 21-30. doi: 10.1016/j.renene.2020.12.030
    [20] LI D Y, WANG H J, QIN Y L, et al. Entropy production analysis of hysteresis characteristic of a pump-turbine model[J]. Energy Conversion and Management, 2017, 149: 175-191. doi: 10.1016/j.enconman.2017.07.024
    [21] MEYERS S D, KELLY B G, O'BRIEN J J. An introduction to wavelet analysis in oceanography and meteorology: with application to the dispersion of Yanai waves[J]. Monthly Weather Review, 1993, 121(10): 2858-2866. doi: 10.1175/1520-0493(1993)121<2858:AITWAI>2.0.CO;2
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09
  • 修回日期:  2024-10-16
  • 网络出版日期:  2025-06-09
  • 刊出日期:  2025-06-09

目录

    /

    返回文章
    返回