Numerical Analysis of the Performance of Lead-Bismuth Centrifugal Pump with High Temperature Closed Circuit under All Operating Conditions
-
摘要: 为探究闭式回路中铅铋离心泵在输送400℃液态铅铋合金(LBE)过程中的热态水力性能,采用联合简化建模的方法,将铅铋循环罐、进出口管道及铅铋离心泵进行整合建模。基于切应力运输(SST) k-ω湍流模型,得到了3种不同流量工况下泵内部的流动特性。研究发现,叶轮流道内存在不同程度的旋涡与介质受力不平衡状态有关,LBE流经叶轮流道过程中科氏力始终占据主导地位。此外,局部熵产率(EPR)主要集中于叶轮叶片的前缘与动静叶栅交界区域,并且随着流量的增加,流道内部的EPR呈现出递减的趋势。在叶轮与导叶流道中压力信号频率在93.33 Hz与116.67 Hz附近呈周期性交替变化,越接近动静叶栅交界面,小波信号强度越显著。研究成果将为今后铅铋离心泵的设计优化及性能评估提供重要的参考依据。Abstract: To investigate the thermal-hydraulic performance of lead-bismuth centrifugal pump in a closed-loop system transporting 400℃ liquid Lead-Bismuth eutectic (LBE), a joint simplified modeling approach that integrates the lead-bismuth circulation tank, inlet/outlet pipelines, and centrifugal pump was employed. Utilizing the shear stress transport (SST) k-ω turbulence model, flow characteristics within the pump under three distinct flow rate conditions were systematically analyzed. The study revealed that vortices of varying intensities in the impeller flow channels were associated with fluid force imbalances, with Coriolis forces maintaining dominant influence throughout the LBE transport process. Local entropy production rate (EPR) was primarily concentrated at the leading edge of impeller blades and rotor-stator interface regions, exhibiting a decreasing trend with increasing flow rates. Pressure signal frequencies in the impeller and guide vane channels demonstrated periodic alternations between 93.33 Hz and 116.67 Hz, while wavelet signal intensity became more pronounced near the rotor-stator interface. These findings provide important references for optimizing design and performance evaluation of centrifugal pumps in lead-bismuth reactor systems.
-
表 1 铅铋离心泵额定参数
Table 1. Rated Parameters of Lead-Bismuth Centrifugal Pump
参数名 数值 额定流量/(m3·h−1) 8 设计扬程/m 12 额定转速/(r·min−1) 1400 参考压力/MPa 3 叶轮叶片数 4 导叶叶片数 5 表 2 两种介质物性参数
Table 2. Physical Properties of the Two Media
介质名称 清水(25℃) LBE(400℃) 密度/(kg·m−3) 981 10201.25 比热容/[J·(kg·K)−1] 4.18 143.92 粘度/10−3 (Pa·s) 1 1.625 导热率/[W·(m·K)−1] 0.60 13.03 表面张力/ (N·m−1) 0.072 0.39 -
[1] ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. Innovative nuclear technology based on modular multi-purpose lead-bismuth cooled fast reactors[J]. Progress in Nuclear Energy, 2008, 50(2-6): 170-178. doi: 10.1016/j.pnucene.2007.10.025 [2] ABRAM T, ION S. Generation-Ⅳ nuclear power: a review of the state of the science[J]. Energy Policy, 2008, 36(12): 4323-4330. doi: 10.1016/j.enpol.2008.09.059 [3] ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011 [4] FOLETTI C, SCADDOZZO G, TARANTINO M, et al. ENEA experience in LBE technology[J]. Journal of Nuclear Materials, 2006, 356(1-3): 264-272. doi: 10.1016/j.jnucmat.2006.05.020 [5] MANGIALARDO A, BORREANI W, LOMONACO G, et al. Numerical investigation on a jet pump evolving liquid lead for GEN-IV reactors[J]. Nuclear Engineering and Design, 2014, 280: 608-618. doi: 10.1016/j.nucengdes.2014.09.028 [6] BORREANI W, ALEMBERTI A, LOMONACO G, et al. Design and selection of innovative primary circulation pumps for GEN-IV lead fast reactors[J]. Energies, 2017, 10(12): 2079. doi: 10.3390/en10122079 [7] LU Y G, WANG X L, FU Q, et al. Comparative analysis of internal flow characteristics of LBE-cooled fast reactor main coolant pump with different structures under reverse rotation accident conditions[J]. Nuclear Engineering and Technology, 2021, 53(7): 2207-2220. doi: 10.1016/j.net.2021.01.015 [8] LU Y G, WANG Z W, ZHU R S, et al. Study on flow characteristics in LBE-cooled main coolant pump under positive rotating condition[J]. Nuclear Engineering and Technology, 2022, 54(7): 2720-2727. doi: 10.1016/j.net.2022.01.023 [9] 王凯琳,李良星,张双雷,等. 轴流铅铋泵的设计及其水力性能分析[J]. 西安交通大学学报,2020, 54(11): 166-174. [10] 王岩,余红星,郭艳磊,等. 液态LBE介质轴流泵压力脉动特性数值研究[J]. 核动力工程,2020, 41(3): 202-207. [11] 张双雷,李良星,宋立明. 轴流铅铋泵流场分析及优化[J]. 核动力工程,2022, 43(3): 158-164. [12] 常杰元,黎义斌,马文生,等. 叶顶间隙结构对轴流铅铋泵叶轮磨损特性的影响[J]. 核技术,2023, 46(10): 100503. doi: 10.11889/j.0253-3219.2023.hjs.46.100503 [13] 刘欣. 铅铋离心泵叶轮和导叶内部流动及磨损特性研究[D]. 兰州: 兰州理工大学,2023: 8-9. [14] 杨从新,吕天智,郭艳磊,等. 铅铋介质与清水介质在核主泵内流动对比[J]. 液压气动与密封,2023, 43(6): 11-16. doi: 10.3969/j.issn.1008-0813.2023.06.003 [15] 邓诗雨,卢涛,邓坚,等. 液态铅铋合金湍流普朗特数及RANS模型优选[J]. 核动力工程,2023, 44(2): 98-103. [16] 张金凤,袁寿其,金实斌. 低比转速离心泵内流特性与水力设计[M]. 镇江: 江苏大学出版社,2021: 113-115. [17] FARGE T Z, JOHNSON M W. The effect of backswept blading on the flow in a centrifugal compressor impeller[C]//Proceedings of the ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. Brussels, Belgium: ASME, 1990. [18] KOCK F, HERWIG H. Entropy production calculation for turbulent shear flows and their implementation in CFD codes[J]. International Journal of Heat and Fluid Flow, 2005, 26(4): 672-680. doi: 10.1016/j.ijheatfluidflow.2005.03.005 [19] GUAN H Y, JIANG W, WANG Y C, et al. Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine[J]. Renewable Energy, 2021, 168: 21-30. doi: 10.1016/j.renene.2020.12.030 [20] LI D Y, WANG H J, QIN Y L, et al. Entropy production analysis of hysteresis characteristic of a pump-turbine model[J]. Energy Conversion and Management, 2017, 149: 175-191. doi: 10.1016/j.enconman.2017.07.024 [21] MEYERS S D, KELLY B G, O'BRIEN J J. An introduction to wavelet analysis in oceanography and meteorology: with application to the dispersion of Yanai waves[J]. Monthly Weather Review, 1993, 121(10): 2858-2866. doi: 10.1175/1520-0493(1993)121<2858:AITWAI>2.0.CO;2 -