高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于仿真与测量数据间迁移学习的核电厂运行参数预测

浦克 宋厚德 刘晓晶 宋美琪

浦克, 宋厚德, 刘晓晶, 宋美琪. 基于仿真与测量数据间迁移学习的核电厂运行参数预测[J]. 核动力工程, 2025, 46(2): 261-271. doi: 10.13832/j.jnpe.2024.080004
引用本文: 浦克, 宋厚德, 刘晓晶, 宋美琪. 基于仿真与测量数据间迁移学习的核电厂运行参数预测[J]. 核动力工程, 2025, 46(2): 261-271. doi: 10.13832/j.jnpe.2024.080004
Pu Ke, Song Houde, Liu Xiaojing, Song Meiqi. Prediction of Nuclear Power Plant Operating Parameters Based on Transfer Learning between Simulation and Measurement Data[J]. Nuclear Power Engineering, 2025, 46(2): 261-271. doi: 10.13832/j.jnpe.2024.080004
Citation: Pu Ke, Song Houde, Liu Xiaojing, Song Meiqi. Prediction of Nuclear Power Plant Operating Parameters Based on Transfer Learning between Simulation and Measurement Data[J]. Nuclear Power Engineering, 2025, 46(2): 261-271. doi: 10.13832/j.jnpe.2024.080004

基于仿真与测量数据间迁移学习的核电厂运行参数预测

doi: 10.13832/j.jnpe.2024.080004
详细信息
    作者简介:

    浦 克(1999—),男,硕士研究生,现主要从事核反应堆数字孪生方面的研究,E-mail: puke1110@sjtu.edu.cn

    通讯作者:

    刘晓晶,E-mail: xiaojingliu@sjtu.edu.cn

  • 中图分类号: TL38

Prediction of Nuclear Power Plant Operating Parameters Based on Transfer Learning between Simulation and Measurement Data

  • 摘要: 核电厂安全运行的关键是实现其运行参数的精准预测。近年来,数据驱动方法表现出了强大的预测能力,然而,测量数据的不充分限制了其预测性能。本研究将基于迁移学习框架,开发了一种以多组仿真工况预训练,再利用测量数据微调的预测模型构建方法。首先通过仿真数据训练门控循环单元(GRU)神经网络,再使用部分测量数据微调模型,以预测运行工况的未来状态。使用PKL Ⅲ热工水力台架的B3.1实验的测量数据,及与之相近的9组RELAP5仿真数据,验证了方法的可行性。运用该方法预测得出蒸汽压力、蒸汽温度、下降管流体温度、出口温度、入口温度和质量流量的相对误差分别能够达到0.358%、0.065%、0.020%、0.065%、0.028%和1.705%。最后通过5组数值实验对比说明了方法各模块的有效性。

     

  • 图  1  “预训练—微调”的迁移学习框架

    Figure  1.  “Pre-training to Fine-tuning” Transfer Learning Framework

    图  2  时序数据预处理过程

    Figure  2.  Time Series Data Preprocessing Process

    图  3  GRU与网络结构的示意图

    Figure  3.  Schematic Diagram of GRU and Network Structure

    图  4  多工况数据训练损失“平均化”的训练流程

    Figure  4.  Training Process of “Averaging” Training Loss for Data of Multiple Operating Conditions

    图  5  超参数优化流程图

    Figure  5.  Hyperparameter Optimization Flow Chart

    图  6  微调训练流程图

    Figure  6.  Fine-tuning Training Flow Chart

    图  7  PKL Ⅲ热工水力台架实验B3.1的测量数据曲线

    Figure  7.  Measured Data Curves of Experiment B3.1 at PKL Ⅲ

    图  9  超参数优化的迭代过程

    Figure  9.  Iterative Process of Hyperparameter Optimization

    图  8  9组仿真工况数据与实验测量数据的数据曲线对比

    图中图例均参照子图a

    Figure  8.  Comparison of 9 Sets of Simulation Data and Experimental Data

    图  10  预训练模型在ZBS仿真工况上的预测结果

    红色竖线为训练集和验证集的分割线

    Figure  10.  Prediction Results of Pre-trained Model under ZBS Simulation Conditions

    图  11  预训练模型经过微调后在测量数据上的预测结果

    蓝色竖线为验证集和测试集的分割线

    Figure  11.  Prediction Results of Pre-trained Model after Fine-tuning with Measured Data

    图  12  5组对比实验在测试集上预测结果

    Figure  12.  Prediction Results of 5 Groups of Comparative Experiments with Test Set

    图  13  不同数量的仿真工况在微调过程中的损失曲线对比

    Figure  13.  Comparison of Loss Curves for Different Numbers of Simulation Conditions during Fine-tuning

    表  1  PKL Ⅲ热工水力台架实验B3.1的实验测量物理量

    Table  1.   Experimental Measurement of Physical Quantities in Experiment B3.1 at PKL Ⅲ

    物理量 符号
    蒸汽发生器二次侧蒸汽压力/Pa Pdm
    蒸汽发生器二次侧蒸汽温度/K Tdm
    蒸汽发生器二次侧下降管流体温度/K Tdc
    蒸汽发生器一次侧出口温度/K Tout
    蒸汽发生器一次侧入口温度/K Tin
    蒸汽发生器一次侧质量流量/(kg·s−1) M
    下载: 导出CSV

    表  2  9组仿真工况的描述

    Table  2.   Description of 9 Sets of Simulation Conditions

    工况名称 参数调整
    ZBS 基准计算
    BCM1 质量流量整体提升5%
    BCM2 质量流量整体降低5%
    BCT1 入口温度整体降低2 K
    BCT2 入口温度整体提升2 K
    PA1 瞬态二次侧散热系数整体提升5%
    PA2 瞬态二次侧散热系数整体降低5%
    PA3 瞬态二次侧散热系数整体提升10%
    PA4 瞬态二次侧散热系数整体降低10%
    下载: 导出CSV

    表  3  超参数优化范围

    Table  3.   Hyperparameter Optimization Range

    超参数 取值范围
    网络层数 1~5
    隐藏层节点数 1~1000
    初始学习率 10−7~10−1
    小批量大小 1~50
    正则化系数 10−7~10−1
    SGD优化器的平方梯度衰减因子 0.8~1.0
    下载: 导出CSV

    表  4  最优超参数的取值

    Table  4.   Optimal Hyperparameter Values

    超参数 最优取值
    网络层数 1
    隐藏层节点数 332
    初始学习率 0.0034
    小批量大小 11
    正则化系数 1.13×10−7
    SGD优化器的平方梯度衰减因子 0.99
    下载: 导出CSV

    表  5  预训练模型在ZBS仿真工况上的预测结果的误差和拟合优度

    Table  5.   Error and Goodness of Fit of Prediction Results of Pre-trained Model under ZBS Simulation Conditions

    物理量 训练集 验证集
    MAPE/% RMSE R2 MAPE/% RMSE R2
    Pdm 0.062 2338 Pa 0.999 0.109 2822 Pa 0.999
    Tdm 0.007 0.045 K 0.999 0.046 0.259 K 0.993
    Tdc 0.018 0.107 K 0.999 0.059 0.314 K 0.999
    Tout 0.015 0.098 K 0.999 0.102 0.550 K 0.989
    Tin 0.014 0.092 K 0.999 0.044 0.239 K 0.998
    M 0.605 0.002 kg/s 0.999 0.588 0.002 kg/s 0.998
    下载: 导出CSV

    表  6  预训练模型在9个仿真工况上预测结果的整体归一化RMSE平均值

    Table  6.   Overall Normalized RMSE Average of Prediction Results of Pre-trained Model under 9 Simulation Conditions

    工况名称 训练集$\overline {{\mathrm{RMSE}}} $ 验证集$\overline {{\mathrm{RMSE}}} $
    ZBS 0.00216 0.00651
    BCM1 0.00221 0.00651
    BCM2 0.00216 0.00659
    BCT1 0.00223 0.00649
    BCT2 0.00221 0.00660
    PA1 0.00217 0.00585
    PA2 0.00214 0.00637
    PA3 0.00221 0.00610
    PA4 0.00223 0.00610
    下载: 导出CSV

    表  7  预训练模型经过微调后在测量数据上的预测结果的误差和拟合优度

    Table  7.   Error and Goodness of Fit of Prediction Results of Pre-trained Model after Fine-tuning with Measured Data

    物理量 训练集 验证集 测试集
    MAPE/% RMSE R2 MAPE/% RMSE R2 MAPE/% RMSE R2
    Pdm 0.042 1638 Pa 0.999 0.180 4816 Pa 0.991 0.358 9588 Pa 0.995
    Tdm 0.007 0.045 K 0.999 0.022 0.112 K 0.989 0.065 0.444 K 0.974
    Tdc 0.007 0.050 K 0.999 0.005 0.037 K 0.999 0.020 0.124 K 0.999
    Tout 0.020 0.127 K 0.999 0.017 0.097 K 0.993 0.065 0.424 K 0.994
    Tin 0.011 0.073 K 0.999 0.028 0.146 K 0.984 0.028 0.155 K 0.999
    M 0.179 0.001 kg/s 0.999 0.140 0.001 kg/s 0.999 1.705 0.008 kg/s 0.986
    下载: 导出CSV

    表  8  5组对比实验在测试集上预测结果的整体归一化均方根误差平均值

    Table  8.   Overall Normalized RMSE Average of Prediction Results of 5 Groups of Comparative Experiments with Test Set

    对比实验 $\overline {{\mathrm{RMSE}}} $
    实验一 0.0085
    实验二 0.0083
    实验三 0.0093
    实验四 0.0252
    实验五 0.0625
    下载: 导出CSV
  • [1] RAMEZANI I, MOSHKBAR-BAKHSHAYESH K, VOSOUGHI N, et al. Applications of Soft Computing in nuclear power plants: a review[J]. Progress in Nuclear Energy, 2022, 149: 104253. doi: 10.1016/j.pnucene.2022.104253
    [2] RADAIDEH M I, PIGG C, KOZLOWSKI T, et al. Neural-based time series forecasting of loss of coolant accidents in nuclear power plants[J]. Expert Systems with Applications, 2020, 160: 113699. doi: 10.1016/j.eswa.2020.113699
    [3] XIAO X, ZHANG X, SONG M Q, et al. NPP accident prevention: integrated neural network for coupled multivariate time series prediction based on PSO and its application under uncertainty analysis for NPP data[J]. Energy, 2024, 305: 132374. doi: 10.1016/j.energy.2024.132374
    [4] SONG H D, LIU X J, SONG M Q. Comparative study of data-driven and model-driven approaches in prediction of nuclear power plants operating parameters[J]. Applied Energy, 2023, 341: 121077. doi: 10.1016/j.apenergy.2023.121077
    [5] LIU M L, WEI Y W, WANG L, et al. An accident diagnosis method of pressurized water reactor based on BI-LSTM neural network[J]. Progress in Nuclear Energy, 2023, 155: 104512. doi: 10.1016/j.pnucene.2022.104512
    [6] MIN G Y, MA Y, WANG Y H, et al. Flow fields prediction for data-driven model of 5 × 5 fuel rod bundles based on POD-RBFNN surrogate model[J]. Nuclear Engineering and Design, 2024, 422: 113117. doi: 10.1016/j.nucengdes.2024.113117
    [7] LI J K, LIN M, LI Y K, et al. Transfer learning with limited labeled data for fault diagnosis in nuclear power plants[J]. Nuclear Engineering and Design, 2022, 390: 111690. doi: 10.1016/j.nucengdes.2022.111690
    [8] PRANTIKOS K, CHATZIDAKIS S, TSOUKALAS L H, et al. Physics-informed neural network with transfer learning (TL-PINN) based on domain similarity measure for prediction of nuclear reactor transients[J]. Scientific Reports, 2023, 13(1): 16840. doi: 10.1038/s41598-023-43325-1
    [9] QIAN G S, LIU J Q. Fault diagnosis based on gated recurrent unit network with attention mechanism and transfer learning under few samples in nuclear power plants[J]. Progress in Nuclear Energy, 2023, 155: 104502. doi: 10.1016/j.pnucene.2022.104502
    [10] CHEN B H, LI Q L, MA R, et al. Towards the generalization of time series classification: a feature-level style transfer and multi-source transfer learning perspective[J]. Knowledge-Based Systems, 2024, 299: 112057. doi: 10.1016/j.knosys.2024.112057
    [11] ZHOU F, CHEN Y Y, WEN J, et al. Episodic task agnostic contrastive training for multi-task learning[J]. Neural Networks, 2023, 162: 34-45. doi: 10.1016/j.neunet.2023.02.023
    [12] NGUYEN H P, LIU J, ZIO E. A long-term prediction approach based on long short-term memory neural networks with automatic parameter optimization by Tree-structured Parzen Estimator and applied to time-series data of NPP steam generators[J]. Applied Soft Computing, 2020, 89: 106116. doi: 10.1016/j.asoc.2020.106116
    [13] YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014.
    [14] LIU X J, SCHAEFER A. Improvement of ATHLET modelling capability for asymmetric natural circulation phenomenon using uncertainty and sensitivity measures[J]. Annals of Nuclear Energy, 2013, 62: 471-482. doi: 10.1016/j.anucene.2013.07.009
  • 加载中
图(13) / 表(8)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-30
  • 录用日期:  2025-01-15
  • 修回日期:  2024-09-08
  • 网络出版日期:  2025-01-15
  • 刊出日期:  2025-04-15

目录

    /

    返回文章
    返回