高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯优化的压水堆堆芯换料优化方法研究

周原成 李云召 吴宏春

周原成, 李云召, 吴宏春. 基于贝叶斯优化的压水堆堆芯换料优化方法研究[J]. 核动力工程, 2025, 46(2): 202-208. doi: 10.13832/j.jnpe.2024.09.0003
引用本文: 周原成, 李云召, 吴宏春. 基于贝叶斯优化的压水堆堆芯换料优化方法研究[J]. 核动力工程, 2025, 46(2): 202-208. doi: 10.13832/j.jnpe.2024.09.0003
Zhou Yuancheng, Li Yunzhao, Wu Hongchun. Research on PWR Core Refueling Optimization Method Based on Bayesian Optimization[J]. Nuclear Power Engineering, 2025, 46(2): 202-208. doi: 10.13832/j.jnpe.2024.09.0003
Citation: Zhou Yuancheng, Li Yunzhao, Wu Hongchun. Research on PWR Core Refueling Optimization Method Based on Bayesian Optimization[J]. Nuclear Power Engineering, 2025, 46(2): 202-208. doi: 10.13832/j.jnpe.2024.09.0003

基于贝叶斯优化的压水堆堆芯换料优化方法研究

doi: 10.13832/j.jnpe.2024.09.0003
基金项目: 国家自然科学基金(12375175)
详细信息
    作者简介:

    周原成(1996—),男,博士研究生,现主要从事压水堆堆芯物理分析方法研究与软件研发,E-mail: 1104055952@qq.com

    通讯作者:

    李云召,E-mail: yunzhao@xjtu.edu.cn

  • 中图分类号: TL32

Research on PWR Core Refueling Optimization Method Based on Bayesian Optimization

  • 摘要: 压水堆堆芯换料优化是核电站安全高效经济运行的关键环节,属于有约束的非线性非凸整数组合优化问题。传统方法计算效率低,容易陷入局部最优解。本文提出了一种基于变分自动编码器、深度度量学习和贝叶斯优化的换料优化方法。该方法利用变分自动编码器将离散的堆芯布置方案映射到连续的隐变量空间;再通过深度度量学习构建结构化的隐空间,使堆芯物理特性相近的样本在隐空间中距离也相近;然后利用多目标贝叶斯优化方法在隐空间中高效地搜索最优解,并通过解码器将最优隐变量解码成对应的堆芯布置方案。基于某M310堆芯首循环初装料数据进行的实验验证表明,该方法能够有效提高换料优化效率和求解质量,获得优于传统方法的布置方案。

     

  • 图  1  基于VAE、深度度量学习和贝叶斯优化的换料优化算法流程图

    Figure  1.  Flowchart of Refueling Optimization Algorithm Based on VAE, Deep Metric Learning, and Bayesian Optimization

    图  2  方案1堆芯布置

    Figure  2.  Loading Pattern of Scheme 1

    图  3  方案2堆芯布置

    Figure  3.  Loading Pattern of Scheme 2

    图  4  120次迭代过程结果分布

    Figure  4.  Distribution of Results during 120 Iterations

    表  1  换料优化迭代120次帕累托前沿(VAE+深度度量学习+贝叶斯优化)

    Table  1.   Pareto Front of Refueling Optimization after 120 Iterations (VAE + Deep Metric Learning + Bayesian Optimization)

    堆芯布置方案 keff fxy
    方案 1 1.09562 1.346
    方案 2 1.09888 1.351
    方案 3 1.09897 1.359
    方案 4 1.10259 1.360
    方案 5 1.11544 1.385
    方案 6 1.11977 1.403
    方案 7 1.12053 1.413
    方案 8 1.12081 1.428
    方案 9 1.12124 1.429
    方案 10 1.12209 1.446
    方案 11 1.12594 1.470
    方案 12 1.12986 1.575
    方案 13 1.13514 1.772
    方案 14 1.13592 1.891
    方案 15 1.14056 2.521
    方案 16 1.14518 2.524
    方案 17 1.14554 3.689
    方案 18 1.15449 4.944
    方案 19 1.18588 5.802
    下载: 导出CSV

    表  2  换料优化迭代120次帕累托前沿(NSGA-II)

    Table  2.   Pareto Front of Refueling Optimization after 120 Iterations (NSGA-II)

    堆芯布置方案 keff fxy
    方案 1 1.08931 1.436
    方案 2 1.09031 1.437
    方案 3 1.09490 1.450
    方案 4 1.10177 1.459
    方案 5 1.12210 1.488
    方案 6 1.13769 1.496
    方案 7 1.13885 1.521
    方案 8 1.14249 1.567
    方案 9 1.14627 1.584
    方案 10 1.15437 1.600
    方案 11 1.15509 1.711
    方案 12 1.16796 1.771
    方案 13 1.16863 1.881
    方案 14 1.16907 2.334
    方案 15 1.17031 2.448
    方案 16 1.17437 2.496
    方案 17 1.17641 2.584
    方案 18 1.17833 3.819
    下载: 导出CSV
  • [1] LI Z, WANG J C, DING M. A review on optimization methods for nuclear reactor fuel reloading analysis[J]. Nuclear Engineering and Design, 2022, 397: 111950. doi: 10.1016/j.nucengdes.2022.111950
    [2] KIRKPATRICK S, GELATT JR C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680. doi: 10.1126/science.220.4598.671
    [3] HOLLAND J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. Cambridge: MIT Press, 1992.
    [4] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks. Perth: IEEE, 1995: 1942-1948.
    [5] ERDOĞAN A, GEÇKINLI M. A PWR reload optimisation code (XCore) using artificial neural networks and genetic algorithms[J]. Annals of Nuclear Energy, 2003, 30(1): 35-53. doi: 10.1016/S0306-4549(02)00041-5
    [6] WAN C H, LEI K H, LI Y S. Optimization method of fuel-reloading pattern for PWR based on the improved convolutional neural network and genetic algorithm[J]. Annals of Nuclear Energy, 2022, 171: 109028. doi: 10.1016/j.anucene.2022.109028
    [7] LI Z, WANG J C, HUANG J, et al. Development and research of triangle-filter convolution neural network for fuel reloading optimization of block-type HTGRs[J]. Applied Soft Computing, 2022, 136: 110126.
    [8] JIN Y C. Surrogate-assisted evolutionary computation: recent advances and future challenges[J]. Swarm and Evolutionary Computation, 2011, 1(2): 61-70. doi: 10.1016/j.swevo.2011.05.001
    [9] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. doi: 10.1023/A:1008306431147
    [10] WANG X L, JIN Y C, SCHMITT S, et al. Recent advances in Bayesian optimization[J]. ACM Computing Surveys, 2023, 55(13s): 287. doi: 10.1145/3582078
    [11] SHAHRIARI B, SWERSKY K, WANG Z Y, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148-175. doi: 10.1109/JPROC.2015.2494218
    [12] SEEGER M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69-106. doi: 10.1142/S0129065704001899
    [13] MOČKUS J. On Bayesian methods for seeking the extremum[C]//Proceedings of the IFIP Technical Conference on Optimization Techniques. Novosibirsk: Springer, 1974: 400-404.
    [14] AUER P. Finite-time Analysis of the Multiarmed Bandit Problem[Z]. Kluwer Academic Publishers, 2002.
    [15] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. arXiv, 2022. [2024-07-01]. http://arxiv.org/abs/1312.6114.
    [16] KAYA M, BİLGE H Ş. Deep metric learning: a survey[J]. Symmetry, 2019, 11(9): 1066. doi: 10.3390/sym11091066
    [17] ISHFAQ H, HOOGI A, RUBIN D. TVAE: triplet-based variational autoencoder using metric learning[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver: ICLR, 2018.
    [18] KOGE D, ONO N, HUANG M, et al. Embedding of molecular structure using molecular hypergraph variational autoencoder with metric learning[J]. Molecular Informatics, 2021, 40(2): e2000203. doi: 10.1002/minf.202000203
    [19] DAULTON S, ERIKSSON D, BALANDAT M, et al. Multi-objective Bayesian optimization over high-dimensional search spaces[EB/OL]. arXiv, 2022. [2024-04-22]. http://arxiv.org/abs/2109.10964.
    [20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017: 6000-6010.
    [21] YU W H, SI C Y, ZHOU P, et al. MetaFormer baselines for vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(2): 896-912. doi: 10.1109/TPAMI.2023.3329173
    [22] GROSNIT A, TUTUNOV R, MARAVAL A M, et al. High-dimensional Bayesian optimisation with variational autoencoders and deep metric learning[EB/OL]. arXiv, 2021. [2024-02-26]. http://arxiv.org/abs/2106.03609.
    [23] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61. doi: 10.1080/00401706.2000.10485979
    [24] SRINIVAS N, DEB K. Muiltiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248. doi: 10.1162/evco.1994.2.3.221
    [25] TRIPP A, DAXBERGER E, HERNÁNDEZ-LOBATO J M. Sample-efficient optimization in the latent space of deep generative models via weighted retraining[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc. , 2020: 945.
    [26] 梁毅琳,李云召,周原成,等.基于核电厂实测数据的NECP-Bamboo软件验证与确认[J].核动力工程, 2024, 45(2):24-34.

    梁毅琳, 李云召, 周原成, 等.基于核电厂实测数据的NECP-Bamboo软件验证与确认[J].核动力工程, 2024, 45(2):24-34.
    [27] 李倩倩. 基于压水堆换料优化基准问题的随机优化方法的机理及应用研究[D]. 上海: 上海交通大学,2010.
    [28] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [29] BLANK J, DEB K. Pymoo: multi-objective optimization in python[J]. IEEE Access, 2020, 8: 89497-89509. doi: 10.1109/ACCESS.2020.2990567
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-20
  • 录用日期:  2024-11-13
  • 修回日期:  2024-11-13
  • 网络出版日期:  2025-04-02
  • 刊出日期:  2025-04-02

目录

    /

    返回文章
    返回