高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

使用卷积神经网络分辨核子有效质量劈裂

李理 张英逊 杨钧评 崔莹 陈响 王馨钰 赵凯

李理, 张英逊, 杨钧评, 崔莹, 陈响, 王馨钰, 赵凯. 使用卷积神经网络分辨核子有效质量劈裂[J]. 核动力工程, 2025, 46(2): 68-75. doi: 10.13832/j.jnpe.2024.09.0028
引用本文: 李理, 张英逊, 杨钧评, 崔莹, 陈响, 王馨钰, 赵凯. 使用卷积神经网络分辨核子有效质量劈裂[J]. 核动力工程, 2025, 46(2): 68-75. doi: 10.13832/j.jnpe.2024.09.0028
Li Li, Zhang Yingxun, Yang Junping, Cui Ying, Chen Xiang, Wang Xinyu, Zhao Kai. Using Convolutional Neural Networks to Distinguish Nucleon Effective Mass Splitting[J]. Nuclear Power Engineering, 2025, 46(2): 68-75. doi: 10.13832/j.jnpe.2024.09.0028
Citation: Li Li, Zhang Yingxun, Yang Junping, Cui Ying, Chen Xiang, Wang Xinyu, Zhao Kai. Using Convolutional Neural Networks to Distinguish Nucleon Effective Mass Splitting[J]. Nuclear Power Engineering, 2025, 46(2): 68-75. doi: 10.13832/j.jnpe.2024.09.0028

使用卷积神经网络分辨核子有效质量劈裂

doi: 10.13832/j.jnpe.2024.09.0028
基金项目: 国家自然科学基金(12275359、12375129、11875323、11961141003);国家重点研发计划(2023YFA1606402);中国原子能科学研究院稳定支持基础科研计划(YZ222407001301、YZ232604001601);中核集团公司领创计划(LC192209000701、LC202309000201);抗辐照应用技术创新中心创新基金(KFZC2023021201)
详细信息
    作者简介:

    李 理(1989—),男,助理研究员,现主要从事核物理与机器学习方法交叉领域的研究,E-mail: lili@cnncmail.cn

    通讯作者:

    张英逊,E-mail: zhyx@ciae.ac.cn

  • 中图分类号: TL334

Using Convolutional Neural Networks to Distinguish Nucleon Effective Mass Splitting

  • 摘要: 为精确分辨核物质中质子与中子有效质量劈裂,本研究提出一种使用双通道输入的卷积神经网络(CNN)确定核子有效质量劈裂的新方法。该方法的主要思想是利用CNN学习理论模型计算质子、中子产额的纵、横动量分布。研究采用的理论模型为改进的量子分子动力学模型(ImQMD),有效相互作用参数为SkM*与SLy4两套参数,分别对应于中子有效质量大于质子有效质量和中子有效质量小于质子有效质量。通过对大量模型数据的学习,建立了利用CNN分辨核子有效质量劈裂的方法。对3套丰中子弹靶系统48Ca+208Pb、48Ca+124Sn和124Sn+124Sn的分析表明,3套系统均在束流能量为50 MeV/u时分辨精度最高,均超过99.5%。在束流能量为270 MeV/u时,3套系统的分辨精度仍均高于93%。通过遮挡法对质子、中子产额的纵、横动量分布图像重要性区域进行了考查,给出了3套系统在50 MeV/u时的重要性图分析,指出二维动量图像中,低横动量区域对于有效质量劈裂的分辨有更大的重要性。

     

  • 图  1  对称能密度依赖形式随密度的变化

    Figure  1.  Density Dependence of the Symmetry Energy as a Function of Density

    图  2  在非对称核物质中(T=0 MeV, δ=0.2)单粒子势以及对称势随动能以及密度的变化

    Figure  2.  Single Particle Potential and Symmetry Potential as Functions of Kinetic Energy and Density in Asymmetric Nuclear Matter (T=0 MeV, δ=0.2)

    图  3  本研究用到的双输入通道卷积神经网络结构简图

    Figure  3.  Schematic Diagram of Dual-input Channel Convolutional Neural Network Structure Used in This Study

    图  4  48Ca+208Pb系统在束流能量Ebeam= 50 MeV/u情况下参数SkM*与SLy4的3个随机碰撞事件的$ {Y}_{\mathrm{p}}({p}_{\mathrm{z}},{p}_{\mathrm{T}}) $和$ {Y}_{\mathrm{n}}({p}_{\mathrm{z}},{p}_{\mathrm{T}}) $图像对比

    Figure  4.  Comparison of $ {Y}_{\mathrm{p}}({p}_{\mathrm{z}},{p}_{\mathrm{T}}) $ and $ {Y}_{\mathrm{n}}({p}_{\mathrm{z}},{p}_{\mathrm{T}}) $ Maps of Three Pairs of Random Events for Parameters SkM* and SLy4 in System 48Ca+208Pb at a Beam Energy of 50 MeV/u

    图  5  束流能量Ebeam= 50 MeV/u情况下3种系统在测试集中的分辨精度随训练周期的变化

    Figure  5.  Distinguishing Accuracy of the Three Systems in the Test Set as Functions of Training Epochs with Ebeam= 50 MeV/u

    图  6  3种系统在束流能量Ebeam=50~270 MeV/u区间内的分辨精度变化

    Figure  6.  Distinguishing Accuracy Variation of 3 Systems Within the Beam Energy Ebeam=50~270 MeV/u

    图  7  束流能量为50 MeV/u条件下系统3种系统图像分辨重要性区域示意图

    Figure  7.  Schematic Diagram of Important Region of 3 Systems in beam energy of 50 MeV/u

    表  1  两套参数SLy4与SkM*对应的参数与核物质参数(δ=0.2)

    Table  1.   Parameters and Nuclear Matter Parameters (δ=0.2) Corresponding to the Two Sets of Parameters SLy4 and SkM*

    参数 ρ0/fm−3 E0/MeV S0/MeV L/MeV $ \mathrm{\Delta }{m}_{\mathrm{n}\mathrm{p}}^{\mathrm{*}} $
    SLy4 0.16 15.97 32 46 $ < 0 $
    SkM* 0.16 15.77 30 46 $ > 0 $
    下载: 导出CSV
  • [1] LI B A, CAI B J, CHEN L W, et al. Nucleon effective masses in neutron-rich matter[J]. Progress in Particle and Nuclear Physics, 2018, 99: 29-119. doi: 10.1016/j.ppnp.2018.01.001
    [2] FENG Z Q. Effective mass splitting of neutron and proton and isospin emission in heavy-ion collisions[J]. Nuclear Physics A, 2012, 878: 3-13. doi: 10.1016/j.nuclphysa.2012.01.014
    [3] ZHANG Y X, TSANG M B, LI Z X, et al. Constraints on nucleon effective mass splitting with heavy ion collisions[J]. Physics Letters B, 2014, 732: 186-190. doi: 10.1016/j.physletb.2014.03.030
    [4] COUPLAND D D S, YOUNGS M, CHAJECKI Z, et al. Probing effective nucleon masses with heavy-ion collisions[J]. Physical Review C, 2016, 94(1): 011601. doi: 10.1103/PhysRevC.94.011601
    [5] SU J, ZHU L, HUANG C Y, et al. Effects of symmetry energy and effective k-mass splitting on central 96Ru(96Zr)+96Zr(96Ru) collisions at 50 to 400 MeV/nucleon[J]. Physical Review C, 2017, 96(2): 024601. doi: 10.1103/PhysRevC.96.024601
    [6] SU J, ZHU L, GUO C C. Constraints on the effective mass splitting by the isoscalar giant quadrupole resonance[J]. Physical Review C, 2020, 101(4): 044606. doi: 10.1103/PhysRevC.101.044606
    [7] ZHANG F, SU J. Probing neutron–proton effective mass splitting using nuclear stopping and isospin mix in heavy-ion collisions in GeV energy region[J] Nuclear Science and Techniques, 2022, 31(8): 77.
    [8] LI B A, CAI B J, XIE W J, et al. Progress in constraining nuclear symmetry energy using neutron star observables since GW170817[J]. Universe, 2021, 7(6): 182. doi: 10.3390/universe7060182
    [9] STEIGMAN G. Primordial nucleosynthesis: successes and challenges[J] International Journal of Modern Physics E, 2006, 15(1): 1-35.
    [10] MEIßNER U G, RAKHIMOV A M, WIRZBA A, et al. Neutron-proton mass difference in isospin-asymmetric nuclear matter[J]. The European Physical Journal A, 2007, 32(3): 299-309. doi: 10.1140/epja/i2007-10390-9
    [11] LI A, HU J N, SHANG X L, et al. Nonrelativistic nucleon effective masses in nuclear matter: Brueckner-Hartree-Fock model versus relativistic Hartree-Fock model[J]. Physical Review C, 2016, 93(1): 015803. doi: 10.1103/PhysRevC.93.015803
    [12] SHANG X L, LI A, MIAO Z Q, et al. Nucleon effective mass in hot dense matter[J]. Physical Review C, 2020, 101(6): 065801. doi: 10.1103/PhysRevC.101.065801
    [13] OU L, LI Z X, ZHANG Y X, et al. Effect of the splitting of the neutron and proton effective masses on the nuclear symmetry energy at finite temperatures[J]. Physics Letters B, 2011, 697(3): 246-250. doi: 10.1016/j.physletb.2011.01.062
    [14] VAN DALEN E N E, MÜTHER H. Off-shell behavior of nucleon self-energy in asymmetric nuclear matter[J]. Physical Review C, 2010, 82(1): 014319. doi: 10.1103/PhysRevC.82.014319
    [15] WANG S B, TONG H, ZHAO Q, et al. Neutron-proton effective mass splitting in neutron-rich matter[J]. Physical Review C, 2023, 108(3): L031303. doi: 10.1103/PhysRevC.108.L031303
    [16] ZUO W, CAO L G, LI B A, et al. Isospin splitting of the nucleon mean field[J]. Physical Review C, 2005, 72(1): 014005. doi: 10.1103/PhysRevC.72.014005
    [17] MANSOUR H, GAD K, HASSANEEN K S A. Self-consistent green function calculations for isospin asymmetric nuclear matter[J]. Progress of Theoretical Physics, 2010, 123(4): 687-700. doi: 10.1143/PTP.123.687
    [18] MARGUERON J, CASALI R H, GULMINELLI F. Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects[J]. Physical Review C, 2018, 97(2): 025805. doi: 10.1103/PhysRevC.97.025805
    [19] LI X H, GUO W J, LI B A, et al. Neutron–proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon–nucleus scattering data within an isospin dependent optical model[J]. Physics Letters B, 2015, 743: 408-414. doi: 10.1016/j.physletb.2015.03.005
    [20] ZHANG Z, CHEN L W. Isospin splitting of the nucleon effective mass from giant resonances in 208Pb[J]. Physical Review C, 2016, 93(3): 034335. doi: 10.1103/PhysRevC.93.034335
    [21] XU J, XIE W J, LI B A. Bayesian inference of nuclear symmetry energy from measured and imagined neutron skin thickness in 116, 118, 120, 122, 124, 130, 132Sn, 208Pb and 48Ca[J]. Physical Review C, 2020, 102(4): 044316. doi: 10.1103/PhysRevC.102.044316
    [22] MORFOUACE P, TSANG C Y, ZHANG Y, et al. Constraining the symmetry energy with heavy-ion collisions and Bayesian analyses[J]. Physics Letters B, 2019, 799: 135045. doi: 10.1016/j.physletb.2019.135045
    [23] TSANG C Y, KURATA-NISHIMURA K, TSANG M B, et al. Constraining nucleon effective masses with flow and stopping observables from the SπRIT experiment[J]. Physics Letters B, 2024, 853: 138661. doi: 10.1016/j.physletb.2024.138661
    [24] ZHANG Y X, WANG N, LI Q F, et al. Progress of quantum molecular dynamics model and its applications in heavy ion collisions[J]. Frontiers of Physics, 2020, 15(5): 54301. doi: 10.1007/s11467-020-0961-9
    [25] SAGAWA H, YOSHIDA S, ZENG G M, et al. Isospin dependence of incompressibility in relativistic and nonrelativistic mean field calculations[J]. Physical Review C, 2007, 76(3): 034327. doi: 10.1103/PhysRevC.76.034327
    [26] 邢凤竹,崔建坡,高永浩,等. 超重核296Og的结构和α衰变[J]. 原子核物理评论,2023, 40(4): 511-518.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-07
  • 修回日期:  2024-10-17
  • 网络出版日期:  2025-01-23
  • 刊出日期:  2025-04-02

目录

    /

    返回文章
    返回