Research on Efficient Solution of Neutron Physics Equations Using NAS-Optimized PINN
-
摘要: 为快速且精确地求解堆芯中子扩散和输运这两类方程,可利用物理信息神经网络(PINN)提升偏微分方程求解的速度和效率。然而,由于PINN的预定义结构不够灵活,在一定程度上限制了其在实际应用中的广度和深度。本研究提出了一种寻找最佳PINN结构的创新方法(NAS-PINN),利用神经网络架构搜索(NAS)策略,动态地选择最适合于求解核反应堆中子扩散和输运方程的PINN结构。将搜索得到的PINN模型应用于方程求解中,进行真实值与预测值的实验验证比较。结果表明,NAS-PINN方法在求解不同几何的反应堆方程中具有更高的精度,为复杂的中子方程提供了更加准确、高效的求解方案。
-
关键词:
- 中子扩散方程 /
- 中子输运方程 /
- 物理信息神经网络(PINN) /
- 神经网络架构搜索(NAS)
Abstract: To quickly and accurately solve the two kinds of equations of neutron diffusion and transport in the core, Physics-Informed Neural Networks (PINN) can be utilized to enhance the speed and efficiency of solving partial differential equation. However, the predefined structure of PINNs is relatively inflexible, limiting their width and depth in practical applications. This study proposes an innovative approach for determining the optimal PINN structure, (NAS-PINN), which employs a Neural Architecture Search (NAS) strategy to dynamically select the most suitable PINN structure for solving neutron diffusion and transport equations of nuclear reactors. The PINN model identified through this search is applied to equation solving, and the experimental verification comparison is made between the true and predicted values. The results show that the NAS-PINN method has higher accuracy in solving reactor equations with different geometries, and provides a more accurate and efficient solution for complex neutron equations. -
表 1 中子扩散方程中的超参数
Table 1. Hyperparameters in Neutron Diffusion Equations
形状 维度 边界点 域点 形状参数 球体 1 50 1950 半径R=1 圆柱体 2 80 8200 半径R=1,高H=1 立方体 3 1200 7800 边长a=1,b=1,c=1 表 2 一维扩散方程上最优神经网络架构的实验结果
Table 2. Experimental Results for Optimal Architecture on One-dimensional Diffusion Equation
方法 架构 MSE L2相对误差 Case 1 6.52×10−6 Case 2 [1, 20 × 16, 1] 3.49×10−10 7.59×10−3 Case 3 [1, 8 × 15, 1] 6.26×10−7 1.08×10−2 Case 4 [1, 19 × 15, 1] 3.49×10−6 6.65×10−3 新模型 [1, 12, 8, 9, 9, 12, 14, 16, 19, 12, 18, 19, 19, 17, 14, 8, 1] 1.30×10−10 5.54×10−3 表 3 二维扩散方程上最优神经网络架构的实验结果
Table 3. Experimental Results for Optimal Architecture on Two-dimensional Diffusion Equation
方法 架构 MSE L2相对误差 Case 1 1.39×10−5 Case 2 [2, 20 × 16, 1] 4.56×10−6 6.77×10−2 Case 3 [2, 8 × 15, 1] 1.82×10−5 1.24×10−1 Case 4 [2, 20 × 15, 1] 8.75×10−5 7.55×10−2 新模型 [2, 17, 12, 10, 11, 12,19, 14, 20, 16, 19, 8, 13, 18, 8, 20, 1] 9.59×10−8 1.14×10−2 表 4 三维扩散方程上最优神经架构的实验结果
Table 4. Experimental Results for Optimal Architecture on Three-dimensional Diffusion Equation
方法 架构 MSE L2相对误差 Case 1 5.22×10−5 Case 2 [3, 20 × 16, 1] 6.23×10−5 2.30×10−2 Case 3 [3, 16 × 10, 1] 8.80×10−8 3.23×10−2 Case 4 [3, 20 × 10, 1] 6.61×10−8 3.64×10−2 新模型 [3, 16, 19, 18, 18, 19,17, 20, 18, 16, 20, 1] 4.77×10−8 1.51×10−2 表 5 球形几何临界标注量率的计算值与理论值的比较
Table 5. Comparison between Calculated Result and Theoretical Value of Critical Scalar Flux Density for Spherical Geometry
参数 r/R=0(中心) r/R=0.25 r/R=0.50 r/R=0.75 r/R=1(边界) 数值计算值 0.99879086 0.92413104 0.68932903 0.37161699 0.07440116 归一化计算值 1 0.92524979 0.69016353 0.37206687 0.07449123 归一化理论值 1 0.91612699 0.68954766 0.36621118 −0.00008100 相对误差 0 0.00995801 0.00089315 0.01598993 −0.00008100 表 6 不同方法的MSE比较结果
Table 6. Comparison Results of MSE for Different Cases
方法 MSE Case 2 5.4885×10−6 Case 3 5.2847×10−6 Case 4 1.4905×10−5 新模型 3.0745×10−6 -
[1] LISZKA T, ORKISZ J. The finite difference method at arbitrary irregular grids and its application in applied mechanics[J]. Computers & Structures, 1980, 11(1-2): 83-95. [2] DOUGLAS JR J, RUSSELL T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures[J]. SIAM Journal on Numerical Analysis, 1982, 19(5): 871-885. doi: 10.1137/0719063 [3] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045 [4] 刘振海,张涛,齐飞鹏,等. 基于PINN的燃料棒稳态温度分布快速预测方法研究[J]. 核动力工程,2024, 45(S1): 39-44. doi: 10.13832/j.jnpe.2024.S1.0039. [5] 杜轲,齐婧,高嘉伟,等. 基于物理信息神经网络(PINN)方法的结构动力响应分析[J/OL]. 工程力学,1-12[2024-10-20]. http://kns.cnki.net/kcms/detail/11.2595.o3.20240822.1525.006.html. [6] REN P Z, XIAO Y, CHANG X J, et al. A comprehensive survey of neural architecture search: challenges and solutions[J]. ACM Computing Surveys, 2022, 54(4): 76. [7] CHEN X, XIE L X, WU J, et al. Progressive DARTs: bridging the optimization gap for NAS in the wild[J]. International Journal of Computer Vision, 2021, 129(3): 638-655. doi: 10.1007/s11263-020-01396-x [8] MIRJALILI S. Genetic algorithm[J]. Studies in Computational Intelligence, 2019, 780: 43–55. [9] 刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8. [10] 曾付林,张小龙,赵鹏程. 基于hp-VPINN的反应堆中子扩散计算方法研究[J]. 核动力工程,2024, 45(2): 53-62. [11] 刘东,王雪强,张斌,等. 深度学习方法求解中子输运方程的微分变阶理论[J]. 原子能科学技术,2023, 57(5): 946-959. doi: 10.7538/yzk.2023.youxian.0002 [12] 杜书华. 输运问题的计算机模拟[M]. 长沙: 湖南科学技术出版社,1989: 102-104. [13] 谢仲生,曹良志,张少泓. 核反应堆物理分析[M]. 第五版. 西安: 西安交通大学出版社,2020: 69-90. [14] 王伟国,李云召,秦浚玮,等. 基于中子电报方程的均匀裸堆瞬态中子输运问题解析解研究[J]. 核动力工程,2024, 45(2): 42-46. [15] JAVAHERIPI M, DE ROSA G H, MUKHERJEE S, et al. LiteTransformerSearch: training-free neural architecture search for efficient language models[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc. , 2022: 24254-24267. [16] 程金芮,金瑾,张朝龙,等. 自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用[J]. 计算机应用,2024, 44(S1): 60-64. [17] JAAFRA Y, LAUREN J L, DERUYVER A, et al. Reinforcement learning for neural architecture search: a review[J]. Image and Vision Computing, 2019, 89: 57-66. doi: 10.1016/j.imavis.2019.06.005 [18] YU C Y, WANG Y X, TANG C W, et al. EU-Net: automatic U-Net neural architecture search with differential evolutionary algorithm for medical image segmentation[J]. Computers in Biology and Medicine, 2023, 167: 107579. doi: 10.1016/j.compbiomed.2023.107579 [19] YE P, LI B P, LI Y K, et al. β-DARTS: beta-decay regularization for differentiable architecture search[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 10864-10873. [20] XUE Y, CHEN C, SŁOWIK A. Neural architecture search based on a multi-objective evolutionary algorithm with probability stack[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(4): 778-786. doi: 10.1109/TEVC.2023.3252612 [21] 华东师范大学数学系. 数学分析下册[M]. 第三版. 北京: 高等教育出版社,2001: 176-243. -