高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大长径比干道钠热管启动特性实验研究

许俊 余红星 邓坚 刘余 张牧昊 夏孝辉

许俊, 余红星, 邓坚, 刘余, 张牧昊, 夏孝辉. 大长径比干道钠热管启动特性实验研究[J]. 核动力工程, 2025, 46(3): 18-23. doi: 10.13832/j.jnpe.2024.10.0029
引用本文: 许俊, 余红星, 邓坚, 刘余, 张牧昊, 夏孝辉. 大长径比干道钠热管启动特性实验研究[J]. 核动力工程, 2025, 46(3): 18-23. doi: 10.13832/j.jnpe.2024.10.0029
Xu Jun, Yu Hongxing, Deng Jian, Liu Yu, Zhang Muhao, Xia Xiaohui. Experimental Study on Start-up Characteristics of Arterial Sodium Heat Pipe with High Ratio of Length to Diameter[J]. Nuclear Power Engineering, 2025, 46(3): 18-23. doi: 10.13832/j.jnpe.2024.10.0029
Citation: Xu Jun, Yu Hongxing, Deng Jian, Liu Yu, Zhang Muhao, Xia Xiaohui. Experimental Study on Start-up Characteristics of Arterial Sodium Heat Pipe with High Ratio of Length to Diameter[J]. Nuclear Power Engineering, 2025, 46(3): 18-23. doi: 10.13832/j.jnpe.2024.10.0029

大长径比干道钠热管启动特性实验研究

doi: 10.13832/j.jnpe.2024.10.0029
基金项目: 核反应堆系统设计技术国家级重点实验室基金(K909002-05-FWHT-WU-20234156)
详细信息
    作者简介:

    许 俊(1996—),男,博士研究生,现主要从事反应堆热工水力及安全分析方向的研究,E-mail: 2541492997@qq.com

    通讯作者:

    余红星, E-mail: yuhong_xing@126.com

  • 中图分类号: TL334

Experimental Study on Start-up Characteristics of Arterial Sodium Heat Pipe with High Ratio of Length to Diameter

  • 摘要: 为了对热管堆的研发提供支撑,本文设计并搭建了高温压缩空气冷却的热管传热实验平台,对大长径比干道钠热管的启动特性开展实验研究。实验结果表明:①热管启动过程前期高温压缩空气提高了冷凝段温度,有利于热管内部钠蒸气形成连续流动,加快热管冷态启动的速度;②启动过程中为冷凝段预热,钠蒸气温度得到提升,可以有效避免遭遇声速极限现象,提高热管成功启动的概率。本文实验结果可为大长径比干道钠热管冷态启动方式的优化提供数据与理论支持。

     

  • 图  1  高温压缩空气冷却的热管传热实验平台

    Figure  1.  Experimental Platform for Heat Transfer Capability of High-temperature Compressed Air Cooling Heat Pipes

    图  2  热电偶分布示意图

    Figure  2.  Thermocouple Layout Diagram

    图  3  高温压缩空气冷却回路

    Figure  3.  High Temperature Compressed Air Cooling Circuit

    图  4  干道钠热管启动过程中壁面温度分布

    Figure  4.  Wall Temperature Distribution During the Startup of Arterial Sodium Heat Pipe

    图  5  热管的实际运行温度和声速极限的理论温度随输入功率的变化曲线

    Figure  5.  Variation Curves of the Actual Operating Temperature of Heat Pipe and the Theoretical Temperature of Sonic Limit with Input Power

    图  6  热管温差随功率的变化

    Figure  6.  Variation of Temperature Difference of Heat Pipe with Power

    图  7  热管等效热阻随输入功率的分布

    Figure  7.  Distribution of Equivalent Thermal Resistance of Heat Pipes with Power

    表  1  热管参数

    Table  1.   Heat Pipe Parameters

    结构参数 参数值 结构参数 参数值
    总长度/m 2.5 蒸发段长度/m 1.1
    外径/mm 20 绝热段长度/m 0.2
    壁面厚度/mm 1 冷凝段长度/m 1.2
    下载: 导出CSV

    表  2  实验工况

    Table  2.   Experimental Conditions

    输入功率/kW 质量流量/
    (kg·s−1)
    气体进出口
    温差/℃
    预热
    功率/kW
    加热器
    温度/℃
    0.3 0.0078 84.2 2.0 700
    0.6 85.3
    0.9 85.4
    1.2 84.5
    1.5 83.1
    1.8 62.3
    2.1 23.8
    2.4 −9.2
    下载: 导出CSV
  • [1] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8.
    [2] MUELLER C, TSVETKOV P. A review of heat-pipe modeling and simulation approaches in nuclear systems design and analysis[J]. Annals of Nuclear Energy, 2021, 160: 108393. doi: 10.1016/j.anucene.2021.108393
    [3] TIAN Z X, WANG C L, GUO K L, et al. A review of liquid metal high temperature heat pipes: theoretical model, design, and application[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124434. doi: 10.1016/j.ijheatmasstransfer.2023.124434
    [4] 庄骏,张红. 热管技术及其工程应用[M]. 北京: 化学工业出版社,2000: 45-50.
    [5] WALKER K L, TARAU C, ANDERSON W G. Grooved and self-venting arterial heat pipes for space fission power systems[J]. Heat Pipe Science and Technology, An International Journal, 2014, 5(1-4): 507-514. doi: 10.1615/HeatPipeScieTech.v5.i1-4.580
    [6] ANDERSON W G, BEARD D, ANDERSON W G, TARAU C. Self-venting arterial heat pipes for spacecraft applications[C]//Proceedings of the Joint 18th IHPC and 12th IHPS. Jeju: IHPC, 2016: 25-27.
    [7] WALKER K L, TARAU C, ANDERSON W G. Alkali metal heat pipes for space fission power[C]//Proceedings of the Nuclear and Emerging Technologies for Space 2013. Albuquerque, NM: NETS, 2013: 1-10.
    [8] WANG C L, ZHANG L R, LIU X, et al. Experimental study on startup performance of high temperature potassium heat pipe at different inclination angles and input powers for nuclear reactor application[J]. Annals of Nuclear Energy, 2020, 136: 107051. doi: 10.1016/j.anucene.2019.107051
    [9] MA Y G, YU H X, HUANG S F, et al. Effect of inclination angle on the startup of a frozen sodium heat pipe[J]. Applied Thermal Engineering, 2022, 201: 117625. doi: 10.1016/j.applthermaleng.2021.117625
    [10] 刘逍,田智星,王成龙,等. 高温热管传热特性实验研究[J]. 核动力工程,2020, 41(S1): 106-111.
    [11] 卫光仁,柴宝华,韩冶,等. 高温钠热管传热性能试验研究[J]. 原子能科学技术,2021, 55(6): 1039-1046. doi: 10.7538/yzk.2021.youxian.0115
    [12] ZHONG R C, FENG W P, MA Y G, et al. Experimental study of heat pipe start-up characteristics and development of an enhanced model considering gas diffusion effects[J]. Applied Thermal Engineering, 2024, 257: 124460. doi: 10.1016/j.applthermaleng.2024.124460
    [13] ZHANG M H, MIAO Q X, ZHANG S Y, et al. Experimental study of non-condensable gas effects on sonic limit of sodium heat pipe[J]. Applied Thermal Engineering, 2023, 232: 120970. doi: 10.1016/j.applthermaleng.2023.120970
    [14] LEVY E K. Theoretical investigation of heat pipes operating at low vapor pressures[J]. Journal of Engineering for Industry, 1968, 90(4): 547-552. doi: 10.1115/1.3604687
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  9
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-18
  • 修回日期:  2024-11-26
  • 网络出版日期:  2025-06-09
  • 刊出日期:  2025-06-09

目录

    /

    返回文章
    返回