Experimental Study on Start-up Characteristics of Arterial Sodium Heat Pipe with High Ratio of Length to Diameter
-
摘要: 为了对热管堆的研发提供支撑,本文设计并搭建了高温压缩空气冷却的热管传热实验平台,对大长径比干道钠热管的启动特性开展实验研究。实验结果表明:①热管启动过程前期高温压缩空气提高了冷凝段温度,有利于热管内部钠蒸气形成连续流动,加快热管冷态启动的速度;②启动过程中为冷凝段预热,钠蒸气温度得到提升,可以有效避免遭遇声速极限现象,提高热管成功启动的概率。本文实验结果可为大长径比干道钠热管冷态启动方式的优化提供数据与理论支持。
-
关键词:
- 热管堆 /
- 大长径比干道钠热管 /
- 启动特性 /
- 高温压缩空气冷却实验
Abstract: To support the research and development of heat pipe reactors, this study designed and constructed a high-temperature compressed air cooling experimental platform to investigate the startup characteristics of high length-diameter arterial sodium heat pipes. The analysis results demonstrate the following: ① In the initial stage of the heat pipe startup process, high-temperature compressed air elevates the temperature of the condensation section, which facilitates the formation of a continuous flow of sodium vapor within the heat pipe, thereby accelerating the cold-state startup speed of the heat pipe; ② During the startup process, preheating of the condensation section enhances the temperature of the sodium vapor, effectively preventing the occurrence of sonic limit phenomenon, and consequently, increases the probability of successful heat pipe startup. The results in this paper provide data and theoretical support for the optimization of the cold start-up mode of the arterial sodium heat pipe with large length-diameter ratio. -
表 1 热管参数
Table 1. Heat Pipe Parameters
结构参数 参数值 结构参数 参数值 总长度/m 2.5 蒸发段长度/m 1.1 外径/mm 20 绝热段长度/m 0.2 壁面厚度/mm 1 冷凝段长度/m 1.2 表 2 实验工况
Table 2. Experimental Conditions
输入功率/kW 质量流量/
(kg·s−1)气体进出口
温差/℃预热
功率/kW加热器
温度/℃0.3 0.0078 84.2 2.0 700 0.6 85.3 0.9 85.4 1.2 84.5 1.5 83.1 1.8 62.3 2.1 23.8 2.4 −9.2 -
[1] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. [2] MUELLER C, TSVETKOV P. A review of heat-pipe modeling and simulation approaches in nuclear systems design and analysis[J]. Annals of Nuclear Energy, 2021, 160: 108393. doi: 10.1016/j.anucene.2021.108393 [3] TIAN Z X, WANG C L, GUO K L, et al. A review of liquid metal high temperature heat pipes: theoretical model, design, and application[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124434. doi: 10.1016/j.ijheatmasstransfer.2023.124434 [4] 庄骏,张红. 热管技术及其工程应用[M]. 北京: 化学工业出版社,2000: 45-50. [5] WALKER K L, TARAU C, ANDERSON W G. Grooved and self-venting arterial heat pipes for space fission power systems[J]. Heat Pipe Science and Technology, An International Journal, 2014, 5(1-4): 507-514. doi: 10.1615/HeatPipeScieTech.v5.i1-4.580 [6] ANDERSON W G, BEARD D, ANDERSON W G, TARAU C. Self-venting arterial heat pipes for spacecraft applications[C]//Proceedings of the Joint 18th IHPC and 12th IHPS. Jeju: IHPC, 2016: 25-27. [7] WALKER K L, TARAU C, ANDERSON W G. Alkali metal heat pipes for space fission power[C]//Proceedings of the Nuclear and Emerging Technologies for Space 2013. Albuquerque, NM: NETS, 2013: 1-10. [8] WANG C L, ZHANG L R, LIU X, et al. Experimental study on startup performance of high temperature potassium heat pipe at different inclination angles and input powers for nuclear reactor application[J]. Annals of Nuclear Energy, 2020, 136: 107051. doi: 10.1016/j.anucene.2019.107051 [9] MA Y G, YU H X, HUANG S F, et al. Effect of inclination angle on the startup of a frozen sodium heat pipe[J]. Applied Thermal Engineering, 2022, 201: 117625. doi: 10.1016/j.applthermaleng.2021.117625 [10] 刘逍,田智星,王成龙,等. 高温热管传热特性实验研究[J]. 核动力工程,2020, 41(S1): 106-111. [11] 卫光仁,柴宝华,韩冶,等. 高温钠热管传热性能试验研究[J]. 原子能科学技术,2021, 55(6): 1039-1046. doi: 10.7538/yzk.2021.youxian.0115 [12] ZHONG R C, FENG W P, MA Y G, et al. Experimental study of heat pipe start-up characteristics and development of an enhanced model considering gas diffusion effects[J]. Applied Thermal Engineering, 2024, 257: 124460. doi: 10.1016/j.applthermaleng.2024.124460 [13] ZHANG M H, MIAO Q X, ZHANG S Y, et al. Experimental study of non-condensable gas effects on sonic limit of sodium heat pipe[J]. Applied Thermal Engineering, 2023, 232: 120970. doi: 10.1016/j.applthermaleng.2023.120970 [14] LEVY E K. Theoretical investigation of heat pipes operating at low vapor pressures[J]. Journal of Engineering for Industry, 1968, 90(4): 547-552. doi: 10.1115/1.3604687 -