POD-RBF Based ROM Method to Calculate Temporal-Spatial Temperature Distribution under DLOFC Accident for VHTR
-
摘要: 超高温气冷堆(VHTR)具有核能制氢等广泛的应用领域,失冷失压(DLOFC)事故是VHTR后果最严重的设计基准事故之一,而利用全阶模型(FOM)进行大量不同参数下的DLOFC事故特性分析需要消耗大量的计算资源。对设计参数范围内的不同方案进行基于降阶模型(ROM)的DLOFC事故的快速、准确计算具有重要需求和意义。本文利用TINTE程序建立了VHTR的FOM,基于本征正交分解-径向基函数插值(POD-RBF)方法实现了一个快速计算VHTR-DLOFC事故的ROM,并给出了两种方法来实现ROM的瞬态过程计算,方法1将时间等同于入口温度等输入参数;方法2对于同一参数下的不同时间步的系数整体进行计算。结果表明,两种ROM方法的计算结果最大相对误差均低于1%,且ROM计算效率远高于FOM;同时方法2的计算效率是方法1的40倍。因此,ROM可以为VHTR设计参数的优化工作提供快速计算程序。
-
关键词:
- 超高温气冷堆(VHTR) /
- 本征正交分解(POD) /
- 径向基函数(RBF)插值 /
- 降阶模型(ROM)
Abstract: Very High-Temperature Gas-cooled Reactor (VHTR) has a wide range of applications such as hydrogen production by nuclear energy. Depressurized Loss of Forced Cooling (DLOFC) accident is one of the most serious design basis accidents of VHTR. It may cause large computational cost to analyze the DLOFC accident with large amount of different input parameters using the Full Order Model (FOM). Based on Reduced Order Model (ROM), it is of great demand and significance to calculate DLOFC accidents quickly and accurately for different schemes within the design parameters. In this paper, the FOM of VHTR is established by the code TINTE, and a ROM for fast calculation of the DLOFC accident of VHTR is realized based on Proper Orthogonal Decomposition-Radial Basis Function Interpolation (POD-RBF) method. Two methods are given to realize the transient process calculation of ROM. Method 1 equates time with input parameters such as inlet temperature; Method 2 calculates the coefficients of different time steps under the same parameter as a whole. The results show that the maximum relative error of both ROM methods is less than 1%, and the computation efficiency of ROMs is much higher than that of FOM. Furthermore, the computational efficiency of Method 2 is 40 times that of Method 1. Therefore, the ROM proposed in this paper can provide a fast calculation code for the optimization of design parameters of VHTR. -
表 1 两种方法计算时间和误差对比
Table 1. Comparison of Calculation Time and Error between Two Methods
方法 POD-RBF方法1 POD-RBF方法2 投影方法1 投影方法2 n和m取值 $ n = 51 $ $ n=51,\ m=6 $ $ n = 51 $ $ n=51,\ m=6 $ 计算时间/s 0.0674 0.0016 加速比 4.2×105 1.8×107 温度最大绝对误差/℃ 3.625 3.799 0.938 1.068 温度最大相对误差/% 0.774 0.789 0.369 0.461 $ {\text{Err}}_{\text{M,n}}$/℃ 0.643 0.649 0.160 0.172 $ {\text{Err}}_{\text{r,M,n}}$/% 0.124 0.125 0.0339 0.0366 -
[1] ZHENG Y H, STEMPNIEWICZ M M, CHEN Z P, et al. Study on the DLOFC and PLOFC accidents of the 200 MWe pebble-bed modular high temperature gas-cooled reactor with TINTE and SPECTRA codes[J]. Annals of Nuclear Energy, 2018, 120: 763-777. doi: 10.1016/j.anucene.2018.06.041 [2] CHI H H, MA Y, WANG Y H. Reduced-order methods for neutron transport kinetics problem based on proper orthogonal decomposition and dynamic mode decomposition[J]. Annals of Nuclear Energy, 2024, 206: 110641. doi: 10.1016/j.anucene.2024.110641 [3] WANG Y H, CHI H H, MA Y. Nodal expansion method based reduced-order model for control rod movement[J]. Annals of Nuclear Energy, 2024, 198: 110279. doi: 10.1016/j.anucene.2023.110279 [4] CHI H H, WANG Y H, MA Y. Reduced-order with least square-finite difference method for neutron transport equation[J]. Annals of Nuclear Energy, 2023, 191: 109914. doi: 10.1016/j.anucene.2023.109914 [5] ZHANG C Y, CHEN G. Fast solution of neutron diffusion problem by reduced basis finite element method[J]. Annals of Nuclear Energy, 2018, 111: 702-708. doi: 10.1016/j.anucene.2017.09.044 [6] ZHANG C Y, CHEN G. Fast solution of neutron transport SP3 equation by reduced basis finite element method[J]. Annals of Nuclear Energy, 2018, 120: 707-714. doi: 10.1016/j.anucene.2018.06.042 [7] ELZOHERY R, ROBERTS J A. Modeling neutronic transients with Galerkin projection onto a greedy-sampled, POD subspace[J]. Annals of Nuclear Energy, 2021, 162: 108487. doi: 10.1016/j.anucene.2021.108487 [8] GONG H L, CHEN W, ZHANG C Y, et al. Fast solution of neutron diffusion problem with movement of control rods[J]. Annals of Nuclear Energy, 2020, 149: 107814. doi: 10.1016/j.anucene.2020.107814 [9] SUN Y, YANG J H, WANG Y H, et al. A POD reduced-order model for resolving the neutron transport problems of nuclear reactor[J]. Annals of Nuclear Energy, 2020, 149: 107799. doi: 10.1016/j.anucene.2020.107799 [10] HE S P, WANG M J, ZHANG J, et al. A deep-learning reduced-order model for thermal hydraulic characteristics rapid estimation of steam generators[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123424. doi: 10.1016/j.ijheatmasstransfer.2022.123424 [11] LORENZI S, CAMMI A, LUZZI L, et al. A reduced order model for investigating the dynamics of the Gen-IV LFR coolant pool[J]. Applied Mathematical Modelling, 2017, 46: 263-284. doi: 10.1016/j.apm.2017.01.066 [12] MIN G Y, MA Y, WANG Y H, et al. Flow fields prediction for data-driven model of 5 × 5 fuel rod bundles based on POD-RBFNN surrogate model[J]. Nuclear Engineering and Design, 2024, 422: 113117. doi: 10.1016/j.nucengdes.2024.113117 [13] LORENZI S, CAMMI A, LUZZI L, et al. POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 311: 151-179. doi: 10.1016/j.cma.2016.08.006 [14] XIAO D H, LIN Z, FANG F X, et al. Non‐intrusive reduced‐order modeling for multiphase porous media flows using Smolyak sparse grids[J]. International Journal for Numerical Methods in Fluids, 2017, 83(2): 205-219. doi: 10.1002/fld.4263 [15] LONG T, BARNETT R, JEFFERSON-LOVEDAY R, et al. A reduced-order model for advection-dominated problems based on Radon Cumulative Distribution Transform[EB/OL]. arXiv, 2023[2024-09-04]. http://arxiv.org/abs/2304.14883. [16] GERMAN P, RAGUSA J C, FIORINA C. Application of Multiphysics model order reduction to doppler/neutronic feedback[J]. EPJ Nuclear Sciences & Technologies, 2019, 5: 17. doi: 10.1051/epjn/2019034 [17] LIU H X, ZHANG H. A reduced order model based on ANN-POD algorithm for steady-state neutronics and thermal-hydraulics coupling problem[J]. Science and Technology of Nuclear Installations, 2023, 2023: 9385756. doi: 10.1155/2023/9385756 [18] ALSAYYARI F, TIBERGA M, PERKÓ Z, et al. A nonintrusive adaptive reduced order modeling approach for a molten salt reactor system[J]. Annals of Nuclear Energy, 2020, 141: 107321. doi: 10.1016/j.anucene.2020.107321 [19] ALSAYYARI F, TIBERGA M, PERKÓ Z, et al. Analysis of the Molten Salt Fast Reactor using reduced-order models[J]. Progress in Nuclear Energy, 2021, 140: 103909. doi: 10.1016/j.pnucene.2021.103909 [20] VERGARI L, CAMMI A, LORENZI S. Reduced order modeling for coupled thermal-hydraulics and reactor physics problems[J]. Progress in Nuclear Energy, 2021, 140: 103899. doi: 10.1016/j.pnucene.2021.103899 [21] ROWLEY C W, COLONIUS T, MURRAY R M. Model reduction for compressible flows using POD and Galerkin projection[J]. Physica D: Nonlinear Phenomena, 2004, 189(1-2): 115-129. doi: 10.1016/j.physd.2003.03.001 [22] SIROVICH L. Turbulence and the dynamics of coherent structures. III. Dynamics and scaling[J]. Quarterly of Applied Mathematics, 1987, 45(3): 583-590. doi: 10.1090/qam/910464 [23] BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 539-575. doi: 10.1146/annurev.fl.25.010193.002543 [24] ELZOHERY R, ROBERTS J. Application of model-order reduction of non-linear time-dependent neutronics via POD-Galerkin projection and matrix discrete empirical interpolation[J]. Annals of Nuclear Energy, 2022, 179: 109396. doi: 10.1016/j.anucene.2022.109396 [25] LORENZI S. An adjoint proper orthogonal decomposition method for a neutronics reduced order model[J]. Annals of Nuclear Energy, 2018, 114: 245-258. doi: 10.1016/j.anucene.2017.12.029 [26] ALSAYYARI F, PERKÓ Z, LATHOUWERS D, et al. A nonintrusive reduced order modelling approach using Proper Orthogonal Decomposition and locally adaptive sparse grids[J]. Journal of Computational Physics, 2019, 399: 108912. doi: 10.1016/j.jcp.2019.108912 [27] LI W, LI J, YAO J, et al. Mode decomposition of core dynamics transients using higher-order DMD method[J]. Nuclear Engineering and Design, 2024, 427: 113417. doi: 10.1016/j.nucengdes.2024.113417 [28] LI W H, PENG S T, LI J G, et al. Prediction of state transitions in 3D core dynamics and xenon transients based on dynamic mode decomposition[J]. Annals of Nuclear Energy, 2024, 197: 110258. doi: 10.1016/j.anucene.2023.110258 [29] XU Y F, PENG M J, CAMMI A, et al. Model order reduction of a once-through steam generator via dynamic mode decomposition[J]. Annals of Nuclear Energy, 2024, 201: 110457. doi: 10.1016/j.anucene.2024.110457 -