Research on Operation Optimization of AP1000 Boric Acid Makeup Subsystem
-
摘要: 相较于传统二代核电机组,AP1000机组硼酸配比子系统设计理念先进、系统结构简单,但在实际机组运行过程中,硼偏差报警频繁出现,影响机组安全运行,有必要进一步优化系统运行性能。本研究通过搭建机组运行数据库,挖掘影响回路性能的关键因素。随后,采用Flowmaster软件和RinSim仿真平台建立仿真模型,并通过仿真试验分析各因素的影响机制。结果表明,三通调节阀入口处的除盐水和硼酸压力的相对大小是决定硼酸配比效果的关键因素。此外,减压阀的性能、硼酸箱液位和测量仪表偏差也是重要的影响因素,调节阀和补水泵的影响相对较小。基于分析结果,本研究进一步探讨了系统的运行优化策略,并从短期和长期2个角度提供了优化方案。本研究分析结果和优化方案可为优化机组运行规程或技改提供参考。Abstract: Compared with the traditional second-generation unit, the boric acid makeup subsystem of AP1000 unit has advanced design concept and simple system structure. However, in the actual operation and maintenance process of the unit, boron deviation alarms frequently occur, which affects the safe operation of the unit. It is necessary to further optimize the system's operational performance. This study aims to identify the key factors that influence the performance of the subsystem by constructing a comprehensive database of unit operations. Subsequently, simulation models are established using Flowmaster and RinSim software, and the impact mechanisms of various factors are analyzed through simulation experiments. The results show that the relative pressure of demineralized water and boric acid at the inlet of the three-way valve is the key factor to determine the effectiveness of the boron concentration control. Additionally, the performance of pressure relief valve, boron tank liquid level, and measurement instrument deviation are also important influencing factors, while the effects of regulating valve and makeup water pump are relatively small. Based on the analysis results, this study further explores operational optimization strategies for the system and provides optimization schemes from both short-term and long-term perspectives. The analysis results and optimization schemes of this study can provide reference for optimizing unit operation regulations or technical transformation.
-
Key words:
- AP1000 /
- Boric acid makeup subsystem /
- Simulation analysis /
- Operational optimization
-
表 1 硼酸配比浓度相关系数
Table 1. Boron Concentration Correlation
单元 硼酸箱
水位除盐水
压力除盐水
流量硼酸
流量调节阀的
阀位命令调节阀的
实际阀位补水
流量补水泵出
口压力A −0.6 0.7 −0.9 0.6 −0.6 −0.9 −0.1 0.7 B −0.2 0.4 −0.9 0.6 −0.4 −0.5 0 −0.2 表 2 仿真试验设计
Table 2. Simulation Experiment Design
编号 试验名称 输入扰动参数 输出目标参数 1 除盐水压力对调节阀配比性能的影响测试 除盐水压力、调节阀阀杆位置 硼酸配比浓度 2 硼酸箱液位影响测试 硼酸箱液位 硼酸配比浓度、配比时长 3 调节阀阀位对除盐水压力的影响测试 调节阀阀位 除盐水压力 4 减压阀稳压性能影响测试 阀门压力设定值、Cv值、行程时间 硼酸配比浓度、配比时长 5 调节阀性能及控制参数影响测试 Cv曲线、行程时间、PID参数及前馈函数发生器参数 硼酸配比浓度、配比时长 6 测量仪表偏差
影响测试传感器FT115、FT116、FT157的测量误差 硼酸配比浓度、配比时长 7 补水泵性能
影响测试补水泵性能曲线、启动时间 硼酸配比浓度、配比时长 Cv—欧美标准流量系数,表征阀门对介质的流通能力;PID—结合比例、积分和微分3种环节于一体的控制算法 表 3 仿真试验结果总结表
Table 3. Summary of Simulation Experiment Results
编号 试验名称 结果描述 1 除盐水压力对调节阀配比性能的影响测试 关键影响因素。调节阀入口处的除盐水压力与硼酸压力的差值会影响调节阀的配比效果。如图6所示,仅当除盐水压力与硼酸压力相等时,调节阀的配比特性才符合设计预期的线性关系 2 硼酸箱液位影响测试 关键影响因素。硼酸箱液位直接影响调节阀硼酸侧的入口压力,该压力与除盐水压力构成了影响调节阀配比能力的重要影响因素。 3 调节阀阀位对除盐水压力的影响测试 非关键影响因素。调节阀的阀位波动会影响除盐水的压力,但在减压阀稳压能力足够的情况下,调节阀小幅度的波动对除盐水压力的影响可以忽略 4 减压阀稳压性能影响测试 关键影响因素。减压阀的稳压能力和调节速度直接影响了调节阀除盐水侧的入口压力变化。一旦减压阀出口压力无法在1 min内及时稳定,极易引起硼偏差报警 5 调节阀性能及控制参数影响测试 非关键影响因素。调节阀的配比能力会受到入口两侧的压力干扰,单纯修改调节阀特性对配比结果的影响有限 6 测量仪表偏差影响测试 一般影响因素。测量仪表的精度越高,硼酸配比浓度越准确,同时对调节阀阀位的控制更加准确,有助于硼酸的配比 7 补水泵性能影响测试 非关键影响因素。补水泵特性变化对系统配比性能造成的影响有限,不会引起明显的浓度偏差 -
[1] 辛克,郝树超. 反应堆硼和水补给系统硼酸箱安全液位相关的设计分析和改进[J]. 核科学与工程,2021, 41(1): 189-193. [2] DONG S B, HAN J, ZHANG H S, et al. Research on operation characteristics of Ap1000 boric acid makeup subsystem[C]. Kyoto, Japan: Proceedings of the 30th International Conference on Nuclear Engineering. Japan Society of Mechanical Engineers, 2023. [3] WESTINGHOUSE ELECTRIC COMPANY. Chemical and volume control system makeup performance[Z]. 2008. [4] 黄秋兰,谢成龙,祁蔚,等. 基于RINSIM仿真平台的汽机蒸汽与疏水系统(CNP600机组)仿真实现[J]. 科技视界,2018(4): 141-143.