Development and Validation of Non-Inertial Coordinate System Motion Model Based on System-level 3D Thermal Hydraulic Code
-
摘要: 为实现海上核动力装置的三维热工水力特性模拟,对运行培训、事故诊断、安全分析等提供技术支持,本研究基于PANTHER程序,开发了一维/三维运动附加力模型、三维运动坐标计算模型、三维非惯性坐标系运动计算模型、输入/输出(IO)集成交互模块,并集成于RINSIM仿真平台,实现了参数实时交互及运动条件在线切换,并基于两环路单相自然循环试验装置完成了对比测试验证。验证结果表明,各海洋运动条件下计算结果满足物理规律,与实验值计算误差在5%以下,证明了程序计算结果的可靠性。本研究开发的海洋条件三维热工水力系统分析程序能够用于海上核动力装置的三维热工水力特性仿真。Abstract: To realize the simulation for three-dimensional thermal hydraulic characteristics of offshore nuclear power plants and provide technical support for operation training, accident diagnosis and safety analysis, this study, based on the PANTHER code, has developed the 1D/3D additional force model, the 3D motion coordinate calculation model, the 3D non-inertial coordinate system motion calculation model and the IO integrated interaction module, which are integrated into the RINSIM simulation platform. Real-time interaction of parameters and on-line switching of motion conditions are realized, and the comparative test verification is completed based on the two-loop single-phase natural circulation test device. The verification results show that the calculation results of each motion condition meet the physical laws, and the calculation error with the experimental value is below 5%, which proves the reliability of the code calculation results under the condition of marine motion. Therefore, the 3D thermal-hydraulic system analysis code developed in this study can be used to simulate the 3D thermal-hydraulic characteristics of offshore nuclear power plants.
-
表 1 附加力模型
Table 1. Additional Force Models
序号 运动类型 附加加速度 1 倾斜运动
(以x轴倾斜为例)$ -\left[\begin{array}{*{20}{c}}0 \\ g_{_0}\sin\theta_x \\ g_{_0}\cos\theta_{x}\end{array}\right] $ 其中,$ {\theta }_{x}=常数 $ 2 起伏运动
(以z方向起伏为例)$ - \left[ {\begin{array}{*{20}{c}} {\text{0}} \\ {\text{0}} \\ {{a_{\textit{z}}}} \end{array}} \right] $ 其中,$ a_{\textit{z}}=g\left[B\sin\theta\left(2\text{π}t\mathord{\left/\vphantom{2\text{π }tT+\varphi}\right.}T+\varphi\right)-1\right] $ 3 摇摆运动
(以绕x轴摇摆为例)$ - \left[ {\begin{array}{*{20}{c}} 0 \\ { - {\beta _{x}}{r_{\textit{z}}} - \omega _{x}^2{r_{y}} - 2{\omega _{x}}{v_{\textit{z}}} + {g_{_0}}\sin {\theta _{x}}} \\ {{\beta _{x}}{r_{y}} - \omega _{x}^2{r_{\textit{z}}} + 2{\omega _{x}}{v_{y}} + {g_{_0}}\cos {\theta _{x}}} \end{array}} \right] $ 其中,$ {\theta _{x}} = B\sin \theta \left( {{{2{\text{π}}t} \mathord{\left/ {\vphantom {{2{\text{π}}t} {T + \varphi }}} \right. } {T + \varphi }}} \right) $ 4 复合运动
(任意轴平动叠加转动)$ \left[ \begin{gathered} {g_{x}} \\ {g_{y}} \\ {g_{\textit{z}}} \\ \end{gathered} \right] - \left[ \begin{gathered} {a_{x}} \\ {a_{y}} \\ {a_{\textit{z}}} \\ \end{gathered} \right] - 2\left[ \begin{gathered} {\omega _{y}}{v_{\textit{z}}} - {\omega _{\textit{z}}}{v_{y}} \\ {\omega _{\textit{z}}}{v_{x}} - {\omega _{x}}{v_{\textit{z}}} \\ {\omega _{x}}{v_{y}} - {\omega _{y}}{v_{x}} \\ \end{gathered} \right] - \left[ \begin{gathered} {\beta _{y}}{r_{\textit{z}}} - {\beta _{\textit{z}}}{r_{y}} \\ {\beta _{\textit{z}}}{r_{x}} - {\beta _{x}}{r_{\textit{z}}} \\ {\beta _{x}}{r_{y}} - {\beta _{y}}{r_{x}} \\ \end{gathered} \right] - \left[ \begin{gathered} {\omega _{x}}{\omega _{y}}{r_{y}} - \omega _{y}^2{r_{x}} - \omega _{\textit{z}}^2{r_{x}} + {\omega _{x}}{\omega _{\textit{z}}}{r_{\textit{z}}} \\ {\omega _{y}}{\omega _{\textit{z}}}{r_{\textit{z}}} - \omega _{\textit{z}}^2{r_{y}} - \omega _{x}^2{r_{y}} + {\omega _{x}}{\omega _{y}}{r_{x}} \\ {\omega _{x}}{\omega _{\textit{z}}}{r_{x}} - \omega _{x}^2{r_{\textit{z}}} - \omega _{y}^2{r_{\textit{z}}} + {\omega _{\textit{z}}}{\omega _{y}}{r_{y}} \\ \end{gathered} \right] $ $ {\theta _{ x}} $—绕轴角度;B—运动幅值;t—运动当前时刻;T—运动周期;$ \varphi $—初始相位角 表 2 静止条件下主要参数
Table 2. Main Parameters under Static Conditions
参数名称 数值 热功率/MW 30.0 一环路系统压力/MPa 15.0 加热器入口冷却剂温度/℃ 184.9 加热器出口冷却剂温度/℃ 266.7 加热器冷却剂平均温度/℃ 225.8 冷却剂总流量/(kg·s−1) 72.0 二次侧压力/MPa 3.0 单个热交换器二次侧流量/(kg·s−1) 17.0 热交换器二次侧入口水温/℃ 60.0 表 3 起伏条件下加热器的流量参数
Table 3. Flow of Heater under Heaving Conditions
参数名 加热器 环路1 环路2 额定流量/(kg·s–1) 72.01 36.00 36.00 最大流量/(kg·s–1) 86.11 42.72 42.72 最小流量/(kg·s–1) 58.61 29.64 29.64 最大流量归一化/% 119.60 118.67 118.67 最小流量归一化/% 81.39 82.33 82.33 表 4 起伏条件下冷却剂温度 ℃
Table 4. Coolant Temperature under Heaving Conditions
位置 最高 最低 幅度 平均 加热器出口 279.48 256.93 22.55 268.20 125-02 278.38 257.72 20.66 268.05 125-04 277.43 257.76 19.67 267.60 125-06 276.56 258.19 18.37 267.38 125-08 275.83 258.60 17.23 267.20 -
[1] 马建,李隆键,黄彦平,等. 海洋条件下舰船反应堆热工水力特性研究现状[J]. 核动力工程,2011, 32(2): 91-96. [2] 鄢炳火,于雷,张杨伟,等. 简谐海洋条件下自然循环运行特性[J]. 原子能科学技术,2009, 43(3): 230-236. [3] 程坤,谭思超. 海洋条件下反应堆热工水力特性研究进展[J]. 哈尔滨工程大学学报,2019, 40(4): 655-662. [4] 谭长禄,张虹,赵华. 基于RELAP5的海洋条件下反应堆热工水力系统分析程序开发[J]. 核动力工程,2009, 30(6): 53-56,62. [5] 鄢炳火,于雷. 摇摆条件下热工水力程序的研制与验证[J]. 原子能科学技术,2012, 46(1): 15-19. doi: 10.7538/yzk.2012.46.01.0015 [6] 程坤,谭思超,陈莹莹,等. 海洋条件反应堆热工水力系统分析程序开发及验证[J]. 哈尔滨工程大学学报,2017, 38(8): 1223-1230. [7] Idaho National Engineering Laboratory. RELAP5/MOD3 code manual: NUREG/CR-5535 INEL-95/0174[R]. Washington: U. S. Nuclear Regulatory Commission, 1995. [8] 谭思超,张文超,庄乃亮. 海洋条件下反应堆热工水力特性研究[M]. 北京: 国防工业出版社,2018:56-49.