Study on Internal Flooding in Nuclear Power Plants Based on 3D Simulation Software CNIFA
-
摘要: 为对核电站内部水淹进行安全评估,开发了具有自主知识产权的三维仿真软件CNIFA,专门用于核电站内部水淹分析。本文利用该三维仿真软件对小型核反应堆ACP100的反应堆厂房进行内部水淹分析,并提出设计改进建议。首先搭建缩比厂房物理模型,通过实验模拟核电站房间内水淹漫延情况,与CNIFA软件仿真结果进行对比,结果表明软件仿真具有较高的准确性;同时针对ACP100反应堆厂房内部水淹开展分析,通过软件仿真分析可知反应堆厂房最低层房间水淹高度达到1.367 m,需考虑相关排水措施。通过CNIFA进行ACP100核电站内部水淹三维仿真分析,适应性强、可视化好,可动态模拟核电站内部水淹场景,三维显示水淹漫延全过程,以便更好制定水淹防护措施。Abstract: In order to carry out safety assessment for internal flooding of nuclear power plants, the 3D simulation software CNIFA with independent intellectual property rights is developed, which is specially used for the analysis of internal flooding in nuclear power plants. In this paper, the 3D simulation software is used to analyze the internal flooding of the small reactor (ACP100) building, and suggestions for design improvement are put forward. Firstly, the physical model of scaled-down building is built, and the flooding spread in the room of nuclear power plant is simulated by experiments. Compared with the simulation results of CNIFA software, the results show that the software simulation has high accuracy. At the same time, the internal flooding of ACP100 reactor building is analyzed. Through software simulation analysis, it is known that the flooding height of the lowest floor room of the reactor building reaches 1.367 m, and relevant drainage measures should be considered. The 3D simulation analysis of internal flooding by CNIFA software has strong adaptability and good visualization, which can dynamically simulate the internal flooding scene of the nuclear power plant and show the whole process of flooding spreading, so as to formulate the flooding protection measures in a better way.
-
Key words:
- Small reactors /
- Internal flooding /
- 3D simulation /
- Safety assessment
-
表 1 最大水位高度
Table 1. Maximum Water Level
房间号 最大水位高度/m 误差/% 试验值 CNIFA计算值 S083 0.550 0.568 3.27 S085 0.550 0.560 1.82 S081 0.550 0.540 1.82 S010 0.550 0.560 1.82 S012 0.550 0.565 2.73 S071 0.550 0.545 0.91 S011 0.550 0.565 2.73 S013 0.570 0.580 1.75 S073 0.550 0.555 0.91 表 2 JR厂房水淹源信息
Table 2. Flooding Sources Information of JR Plant
楼层 工况 管道编号 管径/mm 压力/MPa 水淹流量/
(m3·h−1)仿真时间/s −4.5 m 1# FNP0300B 114.3 1.6 18.7 1800 2# PXS0002A 114.3 17.1 193.4 1800 0 m 3# RVC0101 60.3 17.1 61.4 1800 3.5 m 4# FNP0030 114.3 1.6 18.7 1800 -
[1] 易珂,孙涛. 外部水淹事故对核电厂安全影响分析[J]. 核科学与工程,2015, 35(3): 519-524. doi: 10.3969/j.issn.0258-0918.2015.03.019 [2] 陈莉萍. 压水堆核电站内部水淹安全评价方法研究[D]. 上海: 上海交通大学,2020. [3] 国家核安全局. 核动力厂安全评价与验证: HAD102/17[S]. 北京: 中国原子能出版社,2006: 5-7 . [4] 唐晓明,刘晓爽,吕兴兵,等. 核电厂内部水淹确定论安全评价方法及应用[J]. 原子能科学技术,2014, 48(4): 662-666. doi: 10.7538/yzk.2014.48.04.0662 [5] 国家能源局. 轻水堆隔间淹没效应防护准则: NB/T 20591-2021[S]. 北京: 中国原子能出版社,2021: 12-14.