Experimental Investigation for the Fretting Wear of Cr-coated Zircaloy Cladding
-
摘要: 为研究压水堆湍流激振条件下Cr涂层锆包壳微动磨损的机理和微观作用机制,本文主要以Cr涂层锆包壳为研究对象,开展了多参数耦合下的微动磨损实验研究,阐明了频率、载荷、位移以及循环次数等参数对微动磨损的影响规律。研究获得了19组微动磨损实验后的最大磨损深度与磨损体积,其中最大磨损深度为12.052 µm,最大磨损体积为3.301×10−3 mm3。研究结果表明,微动磨损的主要影响参数包括微动幅度、法向载荷、循环次数和材料硬度,而微动频率对磨损体积和最大磨损深度影响较小。通过最小二乘法拟合实验数据得到了磨损体积计算关系式,其中有68%的实验值和关系式计算值的偏差在±50%以内。本研究对Cr涂层锆包壳耐磨性能评价提供了数据支撑。Abstract: To study the mechanism and microscopic mechanism of fretting wear of Cr-coated zircaloy cladding under the condition of turbulent excitation of PWR, this paper mainly takes Cr-coated zircaloy cladding as the research object, carries out experimental research on fretting wear under multi-parameter coupling, and expounds the influence laws of parameters such as frequency, load, displacement and cycle times on fretting wear. The maximum wear depth and wear volume of 19 sets of fretting wear experiments were obtained, of which the maximum wear depth was 12.052 µm and the maximum wear volume was 3.301×10−3 mm3. The results show that the main influencing parameters of fretting wear include fretting amplitude, normal load, cycle times and material hardness, while fretting frequency has little influence on wear volume and maximum wear depth. The least square method is used to fit the experimental results to obtain the wear volume calculation formula, and the deviation between the experimental value and the calculated value of the formula is within ±50%. This study provides data support for the evaluation of wear resistance of Cr-coated zircaloy cladding.
-
Key words:
- Cr-coated zircaloy cladding /
- Fretting wear /
- Experimental research
-
表 1 实验样品性能
Table 1. Physical Properties of Test Specimens
编号 A# B# C# D# E# 粗糙度/μm 0.3061 0.3711 0.5247 0.3820 0.3281 压痕硬度/GPa 3.85±0.44 3.32±0.21 2.49±0.33 2.65±0.27 2.38±0.47 表 2 微动磨损实验参数取值范围
Table 2. Experimental Parameter Range for Fretting Wear Experiment
法相载荷/N 0~5 5~15 15~25 25~35 35~45 45~55 >55 百分比/% 15 42 5 8 1 7 22 微动幅度/μm 0~25 25~35 55~85 85~120 120~155 >155 百分比/% 10 31 24 16 1 19 频率/Hz 0~5 5~15 15~25 25~35 35~50 >50 百分比/% 15 26 6 49 0 4 表 3 直接测量参数精度
Table 3. Accuracy of Directly Measured Parameters
测量参数 仪表名称 仪表精度/% 信号变送精度/% 采集精度/% 测量精度/% 位移 位移传感器 0.5 0.5 0.5 0.71 载荷 力传感器 0.5 0.5 0.5 0.71 温度 热电偶 0.5 0.2 0.5 0.73 磨损深度 光学轮廓仪 — — — 0.75 -
[1] TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. doi: 10.1016/j.jnucmat.2017.12.043 [2] International Atomic Energy Agency. Review of fuel failures in water cooled reactors (2006-2015)[M]. Vienna: International Atomic Energy Agency, 2010: 9. [3] KIM H K, KIM S J, YOON K H, et al. Fretting wear of laterally supported tube[J]. Wear, 2001, 250(1-12): 535-543. doi: 10.1016/S0043-1648(01)00634-2 [4] KIM T H, KIM S S. Fretting wear mechanisms of zircaloy-4 and Inconel 600 contact in air[J]. KSME International Journal, 2001, 15(9): 1274-1280. doi: 10.1007/BF03185668 [5] FISHER N J, WECKWERTH M K, GRANDISON D A E, et al. Fretting-wear of zirconium alloys[J]. Nuclear Engineering and Design, 2002, 213(1): 79-90. doi: 10.1016/S0029-5493(02)00035-3 [6] JOULIN T P, GUÉROUT F M, LINA A, et al. Effects of loading conditions and types of motion on PWR fuel rod cladding wear[C]//5th International Symposium on Fluid Structure Interaction, Aeroelasticity, and Flow Induced Vibration and Noise. New Orleans: ASME, 2002: 1011-1018. [7] LEE Y H, BYUN T S. A comparative study on the wear behaviors of cladding candidates for accident-tolerant fuel[J]. Journal of Nuclear Materials, 2015, 465: 857-865. doi: 10.1016/j.jnucmat.2015.05.017 [8] ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988. doi: 10.1063/1.1721448 [9] BLAU P J. A multi-stage wear model for grid-to-rod fretting of nuclear fuel rods[J]. Wear, 2014, 313(1-2): 89-96. doi: 10.1016/j.wear.2014.02.016 [10] BLAU P J. A microstructure-based wear model for grid-to-rod fretting of clad nuclear fuel rods[J]. Wear, 2019, 426-427: 750-759. doi: 10.1016/j.wear.2019.01.056