高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr涂层锆包壳微动磨损实验研究

杨思远 袁波 文青龙 文爽 张瑞谦 杨红艳

杨思远, 袁波, 文青龙, 文爽, 张瑞谦, 杨红艳. Cr涂层锆包壳微动磨损实验研究[J]. 核动力工程, 2024, 45(S1): 103-109. doi: 10.13832/j.jnpe.2024.S1.0103
引用本文: 杨思远, 袁波, 文青龙, 文爽, 张瑞谦, 杨红艳. Cr涂层锆包壳微动磨损实验研究[J]. 核动力工程, 2024, 45(S1): 103-109. doi: 10.13832/j.jnpe.2024.S1.0103
Yang Siyuan, Yuan Bo, Wen Qinglong, Wen Shuang, Zhang Ruiqian, Yang Hongyan. Experimental Investigation for the Fretting Wear of Cr-coated Zircaloy Cladding[J]. Nuclear Power Engineering, 2024, 45(S1): 103-109. doi: 10.13832/j.jnpe.2024.S1.0103
Citation: Yang Siyuan, Yuan Bo, Wen Qinglong, Wen Shuang, Zhang Ruiqian, Yang Hongyan. Experimental Investigation for the Fretting Wear of Cr-coated Zircaloy Cladding[J]. Nuclear Power Engineering, 2024, 45(S1): 103-109. doi: 10.13832/j.jnpe.2024.S1.0103

Cr涂层锆包壳微动磨损实验研究

doi: 10.13832/j.jnpe.2024.S1.0103
基金项目: 国家自然科学基金(52201091)
详细信息
    作者简介:

    杨思远(1998—),男,硕士研究生,现主要从事反应堆热工水力研究,E-mail: 1614355207@qq.com

    通讯作者:

    袁 波,E-mail: boyuanyuan@cqu.edu.cn

  • 中图分类号: TL341

Experimental Investigation for the Fretting Wear of Cr-coated Zircaloy Cladding

  • 摘要: 为研究压水堆湍流激振条件下Cr涂层锆包壳微动磨损的机理和微观作用机制,本文主要以Cr涂层锆包壳为研究对象,开展了多参数耦合下的微动磨损实验研究,阐明了频率、载荷、位移以及循环次数等参数对微动磨损的影响规律。研究获得了19组微动磨损实验后的最大磨损深度与磨损体积,其中最大磨损深度为12.052 µm,最大磨损体积为3.301×10−3 mm3。研究结果表明,微动磨损的主要影响参数包括微动幅度、法向载荷、循环次数和材料硬度,而微动频率对磨损体积和最大磨损深度影响较小。通过最小二乘法拟合实验数据得到了磨损体积计算关系式,其中有68%的实验值和关系式计算值的偏差在±50%以内。本研究对Cr涂层锆包壳耐磨性能评价提供了数据支撑。

     

  • 图  1  微动磨损实验装置原理图

    Figure  1.  Schematic of Fretting Wear Test Facility

    图  2  微动磨损实验装置简图

    1—底板;2—主轴模块;3—副轴模块;4—锆管;5—弹簧片;6—水箱  

    Figure  2.  Diagram of Fretting Wear Test Facility

    图  3  实验前样件照片

    Figure  3.  Photos of Test Specimens before the Experiment

    图  4  磨损体积计算示意图

    Figure  4.  Schematic of Wear Volume Calculation

    图  5  实验后样件照片

    Figure  5.  Photos of Test Specimens after the Experiment

    图  6  磨痕的微观形貌

    Figure  6.  Morphology of the Wear Scar

    图  7  Cr涂层锆包壳磨损体积随循环次数的变化

    Figure  7.  Variation of Wear Volume of Cr-coated Zircaloy Cladding with Cycle Times

    图  8  Cr涂层锆包壳磨损体积和最大磨损深度随法向载荷的变化

    Figure  8.  Variation of Wear Volume and Maximum Wear Depth of Cr-coated Zircaloy Cladding with Normal Load

    图  9  Cr涂层锆包壳磨损体积和最大磨损深度随微动幅度的变化

    Figure  9.  Variation of Wear Volume and Maximum Wear Depth of Cr-coated Zircaloy Cladding with Displacement Amplitude

    图  10  Cr涂层锆包壳磨损体积和最大磨损深度随微动频率的变化

    Figure  10.  Variation of Wear Volume and Maximum Wear Depth of Cr-coated Zircaloy Cladding with Fretting Frequency

    图  11  不同材料硬度下Cr涂层锆包壳磨损体积和最大磨损深度

    Figure  11.  Wear Volume and Maximum Wear Depth of Cr-coated Zircaloy Cladding with Different Surface Hardness

    图  12  实验值和关系式计算值对比

    Figure  12.  Comparison between Experimental and Calculated Values

    表  1  实验样品性能

    Table  1.   Physical Properties of Test Specimens

    编号 A# B# C# D# E#
    粗糙度/μm 0.3061 0.3711 0.5247 0.3820 0.3281
    压痕硬度/GPa 3.85±0.44 3.32±0.21 2.49±0.33 2.65±0.27 2.38±0.47
    下载: 导出CSV

    表  2  微动磨损实验参数取值范围

    Table  2.   Experimental Parameter Range for Fretting Wear Experiment

    法相载荷/N 0~5 5~15 15~25 25~35 35~45 45~55 >55
    百分比/% 15 42 5 8 1 7 22
    微动幅度/μm 0~25 25~35 55~85 85~120 120~155 >155
    百分比/% 10 31 24 16 1 19
    频率/Hz 0~5 5~15 15~25 25~35 35~50 >50
    百分比/% 15 26 6 49 0 4
    下载: 导出CSV

    表  3  直接测量参数精度

    Table  3.   Accuracy of Directly Measured Parameters

    测量参数 仪表名称 仪表精度/% 信号变送精度/% 采集精度/% 测量精度/%
    位移 位移传感器 0.5 0.5 0.5 0.71
    载荷 力传感器 0.5 0.5 0.5 0.71
    温度 热电偶 0.5 0.2 0.5 0.73
    磨损深度 光学轮廓仪 0.75
    下载: 导出CSV
  • [1] TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. doi: 10.1016/j.jnucmat.2017.12.043
    [2] International Atomic Energy Agency. Review of fuel failures in water cooled reactors (2006-2015)[M]. Vienna: International Atomic Energy Agency, 2010: 9.
    [3] KIM H K, KIM S J, YOON K H, et al. Fretting wear of laterally supported tube[J]. Wear, 2001, 250(1-12): 535-543. doi: 10.1016/S0043-1648(01)00634-2
    [4] KIM T H, KIM S S. Fretting wear mechanisms of zircaloy-4 and Inconel 600 contact in air[J]. KSME International Journal, 2001, 15(9): 1274-1280. doi: 10.1007/BF03185668
    [5] FISHER N J, WECKWERTH M K, GRANDISON D A E, et al. Fretting-wear of zirconium alloys[J]. Nuclear Engineering and Design, 2002, 213(1): 79-90. doi: 10.1016/S0029-5493(02)00035-3
    [6] JOULIN T P, GUÉROUT F M, LINA A, et al. Effects of loading conditions and types of motion on PWR fuel rod cladding wear[C]//5th International Symposium on Fluid Structure Interaction, Aeroelasticity, and Flow Induced Vibration and Noise. New Orleans: ASME, 2002: 1011-1018.
    [7] LEE Y H, BYUN T S. A comparative study on the wear behaviors of cladding candidates for accident-tolerant fuel[J]. Journal of Nuclear Materials, 2015, 465: 857-865. doi: 10.1016/j.jnucmat.2015.05.017
    [8] ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988. doi: 10.1063/1.1721448
    [9] BLAU P J. A multi-stage wear model for grid-to-rod fretting of nuclear fuel rods[J]. Wear, 2014, 313(1-2): 89-96. doi: 10.1016/j.wear.2014.02.016
    [10] BLAU P J. A microstructure-based wear model for grid-to-rod fretting of clad nuclear fuel rods[J]. Wear, 2019, 426-427: 750-759. doi: 10.1016/j.wear.2019.01.056
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 修回日期:  2024-04-09
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回