高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层各向异性包壳力学模型开发与应用

张睿潇 贺亚男 巫英伟 田文喜 秋穗正 苏光辉

张睿潇, 贺亚男, 巫英伟, 田文喜, 秋穗正, 苏光辉. 多层各向异性包壳力学模型开发与应用[J]. 核动力工程, 2024, 45(S1): 110-116. doi: 10.13832/j.jnpe.2024.S1.0110
引用本文: 张睿潇, 贺亚男, 巫英伟, 田文喜, 秋穗正, 苏光辉. 多层各向异性包壳力学模型开发与应用[J]. 核动力工程, 2024, 45(S1): 110-116. doi: 10.13832/j.jnpe.2024.S1.0110
Zhang Ruixiao, He Yanan, Wu Yingwei, Tian Wenxi, Qiu Suizheng, Su Guanghui. Development and Application of a Mechanical Model for Multilayer Anisotropic Cladding[J]. Nuclear Power Engineering, 2024, 45(S1): 110-116. doi: 10.13832/j.jnpe.2024.S1.0110
Citation: Zhang Ruixiao, He Yanan, Wu Yingwei, Tian Wenxi, Qiu Suizheng, Su Guanghui. Development and Application of a Mechanical Model for Multilayer Anisotropic Cladding[J]. Nuclear Power Engineering, 2024, 45(S1): 110-116. doi: 10.13832/j.jnpe.2024.S1.0110

多层各向异性包壳力学模型开发与应用

doi: 10.13832/j.jnpe.2024.S1.0110
详细信息
    作者简介:

    张睿潇(1998—),男,博士研究生,现主要从事ATF燃料设计与性能分析方面的研究,E-mail: imbaxxxs@stu.xjtu.edu.cn

    通讯作者:

    巫英伟,E-mail: wyw810@mail.xjtu.edu.cn

  • 中图分类号: TL352

Development and Application of a Mechanical Model for Multilayer Anisotropic Cladding

  • 摘要: 由高致密度纯SiC和SiC纤维/基体复合材料(SiCf/SiC)组成的多层SiC复合包壳是当前事故容错燃料(ATF)包壳的热门选型,当前应用的典型燃料性能分析程序缺乏对于SiCf/SiC材料各向异性力学行为的建模能力,为提高燃料性能分析中复合SiC包壳力学计算的准确性,本文开发了一套适用于多层各向异性材料的力学模型,并将其集成到燃料性能分析程序FRAPCON4.0中,采用多层SiC包壳热力耦合算例对模型正确性进行了验证。实现了对具有正交各向异性力学特性和多轴类塑性行为的SiC复合包壳的力学计算功能,分析了双层SiC包壳燃料元件堆内稳态运行工况的性能。本研究建立的力学模型适用于任意多层圆柱结构燃料元件,并具备正交各向异性力学参数及行为的分析能力,可应用于多种新型燃料元件分析。

     

  • 图  1  单层材料的节点划分

    Figure  1.  Meshing for Single-layer Material

    图  2  多层材料界面的节点划分

    Figure  2.  Meshing for Multilayer Material Interface

    图  3  芯块-包壳接触节点划分

    Figure  3.  Meshing for Pellet-Cladding Contact

    图  4  验证算例示意图

    Figure  4.  Validation Case Diagram

    图  5  验证算例应力结果对比

    Figure  5.  Comparison of Stress Results in Validation Case

    图  6  平均线功率历史

    Figure  6.  Average Linear Power History

    图  7  燃料峰值温度对比

    Figure  7.  Fuel Peak Temperature Comparison

    图  8  间隙宽度对比

    Figure  8.  Gap Width Comparison

    图  9  包壳最大环向应力对比

    Figure  9.  Cladding Maximum Hoop Stress Comparison

    表  1  验证算例采用的CMC及CVD型SiC材料参数

    Table  1.   Material Prameters of CMC and CVD SiC in Validation Case

    材料 参数 数值
    CMC型SiC Er/GPa 95.5
    Eθ/GPa 201
    Ez/GPa 173
    ν 0.248
    νrz 0.242
    νθz 0.175
    G/GPa 62.4
    热导率/(W·m–1·K−1) 2
    热膨胀系数 2×10−6
    CVD型SiC E/GPa 460
    ν 0.21
    热导率/(W·m–1·K−1) 10
    热膨胀系数 2×10−6
    下载: 导出CSV

    表  2  燃料棒设计参数和运行条件

    Table  2.   Design Parameters and Operation Conditions of Fuel Rod

    参数 数值
    Zr-4包壳外径/mm 9.48
    Zr-4包壳厚度/mm 0.56
    SiC包壳外径/mm 9.76
    SiC包壳(CMC/CVD)厚度/mm 0.45/0.25
    芯块直径/mm 8.192
    活性区高度/m 3.6576
    气腔长度/m 0.175
    初始内压/MPa 2.41
    冷却剂压力/MPa 15.51
    冷却剂入口温度/K 565.7
    冷却剂质量流量/(kg·m–2·s−1) 3434.5
    下载: 导出CSV
  • [1] TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30.
    [2] KATOH Y, OZAWA K, SHIH C, et al. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects[J]. Journal of Nuclear Materials, 2014, 448(1-3): 448-476.
    [3] LEE Y, KAZIMI M S. A structural model for multi-layered ceramic cylinders and its application to silicon carbide cladding of light water reactor fuel[J]. Journal of Nuclear Materials, 2015, 458: 87-105.
    [4] KATOH Y, SNEAD L L. Silicon carbide and its composites for nuclear applications - Historical overview[J]. Journal of Nuclear Materials, 2019, 526: 151849.
    [5] SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1-3): 329-377.
    [6] KATOH Y, NOZAWA T, SNEAD L L, et al. Stability of SiC and its composites at high neutron fluence[J]. Journal of Nuclear Materials, 2011, 417(1-3): 400-405.
    [7] SUKJAI Y. Silicon carbide performance as cladding for advanced uranium and thorium fuels for light water reactors[D]. Cambridge: Massachusetts Institute of Technology, 2014.
    [8] BEN-BELGACEM M, RICHET V, TERRANI K A, et al. Thermo-mechanical analysis of LWR SiC/SiC composite cladding[J]. Journal of Nuclear Materials, 2014, 447(1-3): 125-142.
    [9] DENG Y B, SHIRVAN K, WU Y W, et al. Probabilistic view of SiC/SiC composite cladding failure based on full core thermo-mechanical response[J]. Journal of Nuclear Materials, 2018, 507: 24-37.
    [10] RHO H, LEE Y. Development of a 2D axisymmetric SiC cladding mechanical model and its applications for steady-state and LBLOCA analysis[J]. Journal of Nuclear Materials, 2022, 558: 153311.
    [11] 邓阳斌,贺亚男,巫英伟,等. 多层结构包壳和非刚体芯块力学建模及应用[J]. 原子能科学技术,2018, 52(7): 1308-1315. doi: 10.7538/yzk.2017.youxian.0611
    [12] DENG Y B, WU Y W, QIU B W, et al. Development of a new Pellet-Clad Mechanical Interaction (PCMI) model and its application in ATFs[J]. Annals of Nuclear Energy, 2017, 104: 146-156.
    [13] HE Y N, SHIRVAN K, WU Y W, et al. Fuel performance optimization of U3Si2-SiC design during normal, power ramp and RIA conditions[J]. Nuclear Engineering and Design, 2019, 353: 110276.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 修回日期:  2024-04-24
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回