Effect of pH on High-temperature Electrochemical Corrosion Behavior of AlCrNbSiTi High Entropy Alloy Coatings on Zr-Sn-Nb Alloy
-
摘要: 为了提高压水堆Zr-Sn-Nb合金包壳材料的耐腐蚀性,本文使用电弧离子镀法在Zr-Sn-Nb合金基底上制备了AlCrNbSiTi高熵合金涂层,并分别在3种不同pH的水环境中进行了开路电位和动电位极化电化学的测量,通过微观表征分析了表面氧化膜的形貌、化学成分和结构,研究了pH值变化对AlCrNbSiTi高熵合金涂层高温电化学行为的影响。研究结果表明,随着pH值(7.4~8.5)的增加,涂层的开路电位下降,极化曲线的腐蚀电流密度增加,涂层表面腐蚀程度加剧。因此,AlCrNbSiTi高熵合金涂层的耐腐蚀性随着pH值(7.4~8.5)的增加而下降。Abstract: In order to improve the corrosion resistance of Zr-Sn-Nb alloy cladding material in PWR, the AlCrNbSiTi high entropy alloy coatings were prepared on Zr-Sn-Nb alloy substrates by arc ion plating, and the open-circuit potential and potentiodynamic polarization electrochemistry were measured in three different pH water environments. The morphology, chemical composition and structure of the surface oxide film were analyzed by microscopic characterization, and the influence of pH change on the high-temperature electrochemical behavior of AlCrNbSiTi high entropy alloy coating was studied. The results show that with the increase of pH (7.4-8.5), the open circuit potential of the coating decreases, the corrosion current density of polarization curve increases and the corrosion degree of the coating surface intensifies. Therefore, the corrosion resistance of AlCrNbSiTi high entropy alloy coating decreases with the increase of pH(7.4~8.5).
-
表 1 AlCrNbSiTi高熵合金涂层化学成分
Table 1. Chemical Composition of AlCrNbSiTi High Entropy Alloy Coating
元素 Al Cr Nb Si Ti 质量分数/% 8 49 12 12 19 -
[1] ZHANG W, WANG M, WANG L, et al. Interface stability, mechanical and corrosion properties of AlCrMoNbZr/(AlCrMoNbZr)N high-entropy alloy multilayer coatings under helium ion irradiation[J]. Applied Surface Science, 2019, 485: 108-118. doi: 10.1016/j.apsusc.2019.04.192 [2] CHEN J, ZHOU X Y, WANG W L, et al. A review on fundamental of high entropy alloys with promising high–temperature properties[J]. Journal of Alloys and Compounds, 2018, 760: 15-30. doi: 10.1016/j.jallcom.2018.05.067 [3] ZOU Y, WHEELER J M, MA H, et al. Nanocrystalline high-entropy alloys: a new paradigm in high-temperature strength and stability[J]. Nano Letters, 2017, 17(3): 1569-1574. doi: 10.1021/acs.nanolett.6b04716 [4] ZHANG W, TANG R, YANG Z B, et al. Preparation, structure, and properties of an AlCrMoNbZr high-entropy alloy coating for accident-tolerant fuel cladding[J]. Surface and Coatings Technology, 2018, 347: 13-19. doi: 10.1016/j.surfcoat.2018.04.037 [5] XIA S Q, YANG X, YANG T F, et al. Irradiation resistance in Al xCoCrFeNi high entropy alloys[J]. JOM, 2015, 67(10): 2340-2344. doi: 10.1007/s11837-015-1568-4 [6] GARBETT K, MANTELL M A. Corrosion product behaviour during hot functional tests and normal operation in cycle 1 at Sizewell B[C]//Proceedings of the Conference Organized. Bournemouth: British Nuclear Energy Society, 1996: 443-450. [7] MONTEMOR M F, FERREIRA M G S, WALLS M, et al. Influence of pH on properties of oxide films formed on type 316L stainless steel, Alloy 600, and Alloy 690 in high-temperature aqueous environments[J]. Corrosion, 2003, 59(1): 11-21. doi: 10.5006/1.3277531 [8] ÁLVAREZ P, COLLAZO A, COVELO A, et al. The electrochemical behaviour of sol–gel hybrid coatings applied on AA2024-T3 Alloy: effect of the metallic surface treatment[J]. Progress in Organic Coatings, 2010, 69(2): 175-183. doi: 10.1016/j.porgcoat.2010.04.005 [9] WESSELMANN C. Water in nuclear power plants with light-water reactors part 1: pressurised-water reactors. Part 2: boiling-water reactors[J]. VGB PowerTech, 2021, 101(3): 101. [10] BETOVA I, BOJINOV M, KARASTOYANOV V, et al. Effect of water chemistry on the oxide film on Alloy 690 during simulated hot functional testing of a pressurised water reactor[J]. Corrosion Science, 2012, 58: 20-32. doi: 10.1016/j.corsci.2012.01.002 [11] 陈峰,刘国辉,林巧力,等. 347不锈钢表面堆焊690镍基合金电化学腐蚀性能研究[J]. 动力工程学报,2016, 36(4): 326-330. doi: 10.3969/j.issn.1674-7607.2016.04.012 [12] XIA D H, ZHU R K, BEHNAMIAN Y, et al. pH Effect on sulfur-induced passivity degradation of Alloy 800 in simulated crevice chemistries[J]. Journal of the Electrochemical Society, 2014, 161(4): C201-C214. doi: 10.1149/2.063404jes [13] 吴开源,王勇,赵卫民. 金属结构的腐蚀与防护[M]. 东营: 石油大学出版社,2000: 58-61. [14] YE Q F, FENG K, LI Z G, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating[J]. Applied Surface Science, 2017, 396: 1420-1426. doi: 10.1016/j.apsusc.2016.11.176 [15] LI Q H, YUE T M, GUO Z N, et al. Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process[J]. Metallurgical and Materials Transactions A, 2013, 44(4): 1767-1778. doi: 10.1007/s11661-012-1535-4