高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

pH对锆基底AlCrNbSiTi高熵合金涂层高温电化学行为的影响

王宇回 刘超 胡勇 彭德全

王宇回, 刘超, 胡勇, 彭德全. pH对锆基底AlCrNbSiTi高熵合金涂层高温电化学行为的影响[J]. 核动力工程, 2024, 45(S1): 123-129. doi: 10.13832/j.jnpe.2024.S1.0123
引用本文: 王宇回, 刘超, 胡勇, 彭德全. pH对锆基底AlCrNbSiTi高熵合金涂层高温电化学行为的影响[J]. 核动力工程, 2024, 45(S1): 123-129. doi: 10.13832/j.jnpe.2024.S1.0123
Wang Yuhui, Liu Chao, Hu Yong, Peng Dequan. Effect of pH on High-temperature Electrochemical Corrosion Behavior of AlCrNbSiTi High Entropy Alloy Coatings on Zr-Sn-Nb Alloy[J]. Nuclear Power Engineering, 2024, 45(S1): 123-129. doi: 10.13832/j.jnpe.2024.S1.0123
Citation: Wang Yuhui, Liu Chao, Hu Yong, Peng Dequan. Effect of pH on High-temperature Electrochemical Corrosion Behavior of AlCrNbSiTi High Entropy Alloy Coatings on Zr-Sn-Nb Alloy[J]. Nuclear Power Engineering, 2024, 45(S1): 123-129. doi: 10.13832/j.jnpe.2024.S1.0123

pH对锆基底AlCrNbSiTi高熵合金涂层高温电化学行为的影响

doi: 10.13832/j.jnpe.2024.S1.0123
基金项目: 稳定支持基础研究项目(BJ19001020)
详细信息
    作者简介:

    王宇回(1997—),男,研究实习员,现主要从事反应堆结构材料腐蚀性能方面的研究,E-mail: 444951913@qq.com

  • 中图分类号: TL341

Effect of pH on High-temperature Electrochemical Corrosion Behavior of AlCrNbSiTi High Entropy Alloy Coatings on Zr-Sn-Nb Alloy

  • 摘要: 为了提高压水堆Zr-Sn-Nb合金包壳材料的耐腐蚀性,本文使用电弧离子镀法在Zr-Sn-Nb合金基底上制备了AlCrNbSiTi高熵合金涂层,并分别在3种不同pH的水环境中进行了开路电位和动电位极化电化学的测量,通过微观表征分析了表面氧化膜的形貌、化学成分和结构,研究了pH值变化对AlCrNbSiTi高熵合金涂层高温电化学行为的影响。研究结果表明,随着pH值(7.4~8.5)的增加,涂层的开路电位下降,极化曲线的腐蚀电流密度增加,涂层表面腐蚀程度加剧。因此,AlCrNbSiTi高熵合金涂层的耐腐蚀性随着pH值(7.4~8.5)的增加而下降。

     

  • 图  1  高熵合金涂层在不同pH条件下的开路电位

    Figure  1.  Open-circuit Potential of High Entropy Alloy Coating under Different pH Conditions

    图  2  高熵合金涂层在不同pH条件下的极化曲线

    Figure  2.  Polarization Curves of High Entropy Alloy Coating under Different pH Conditions

    图  3  试样表面腐蚀形貌SEM图像

    Figure  3.  SEM Images of Surface Corrosion Morphology

    图  4  高倍下试样表面腐蚀形貌SEM图像

    Figure  4.  SEM Images of Surface Corrosion Morphology at High Magnification

    图  5  试样截面氧化膜的TEM明场像

    Figure  5.  TEM Bright Field Images of Cross Section Oxide Film

    图  6  试样HEA-1截面氧化膜的能谱线扫分析结果

    Figure  6.  Energy Spectrum Analysis of Oxide Film on HEA-1 Section

    图  7  试样HEA-3表面析出颗粒的能谱面扫分析结果

    Figure  7.  Mapping Result of Precipitated Particles on HEA-3 Surface

    图  8  试样HEA-3表面析出颗粒的选区电子衍射(SAED)衍射图像

    Figure  8.  SAED Diffraction Pattern of Particles Precipitated on the Surface of HEA-3

    图  9  试样HEA-3表面氧化膜的SAED衍射图像与分析

    Figure  9.  SAED Diffraction Pattern of Oxide Film on HEA-3

    表  1  AlCrNbSiTi高熵合金涂层化学成分

    Table  1.   Chemical Composition of AlCrNbSiTi High Entropy Alloy Coating

    元素 Al Cr Nb Si Ti
    质量分数/% 8 49 12 12 19
    下载: 导出CSV
  • [1] ZHANG W, WANG M, WANG L, et al. Interface stability, mechanical and corrosion properties of AlCrMoNbZr/(AlCrMoNbZr)N high-entropy alloy multilayer coatings under helium ion irradiation[J]. Applied Surface Science, 2019, 485: 108-118. doi: 10.1016/j.apsusc.2019.04.192
    [2] CHEN J, ZHOU X Y, WANG W L, et al. A review on fundamental of high entropy alloys with promising high–temperature properties[J]. Journal of Alloys and Compounds, 2018, 760: 15-30. doi: 10.1016/j.jallcom.2018.05.067
    [3] ZOU Y, WHEELER J M, MA H, et al. Nanocrystalline high-entropy alloys: a new paradigm in high-temperature strength and stability[J]. Nano Letters, 2017, 17(3): 1569-1574. doi: 10.1021/acs.nanolett.6b04716
    [4] ZHANG W, TANG R, YANG Z B, et al. Preparation, structure, and properties of an AlCrMoNbZr high-entropy alloy coating for accident-tolerant fuel cladding[J]. Surface and Coatings Technology, 2018, 347: 13-19. doi: 10.1016/j.surfcoat.2018.04.037
    [5] XIA S Q, YANG X, YANG T F, et al. Irradiation resistance in Al xCoCrFeNi high entropy alloys[J]. JOM, 2015, 67(10): 2340-2344. doi: 10.1007/s11837-015-1568-4
    [6] GARBETT K, MANTELL M A. Corrosion product behaviour during hot functional tests and normal operation in cycle 1 at Sizewell B[C]//Proceedings of the Conference Organized. Bournemouth: British Nuclear Energy Society, 1996: 443-450.
    [7] MONTEMOR M F, FERREIRA M G S, WALLS M, et al. Influence of pH on properties of oxide films formed on type 316L stainless steel, Alloy 600, and Alloy 690 in high-temperature aqueous environments[J]. Corrosion, 2003, 59(1): 11-21. doi: 10.5006/1.3277531
    [8] ÁLVAREZ P, COLLAZO A, COVELO A, et al. The electrochemical behaviour of sol–gel hybrid coatings applied on AA2024-T3 Alloy: effect of the metallic surface treatment[J]. Progress in Organic Coatings, 2010, 69(2): 175-183. doi: 10.1016/j.porgcoat.2010.04.005
    [9] WESSELMANN C. Water in nuclear power plants with light-water reactors part 1: pressurised-water reactors. Part 2: boiling-water reactors[J]. VGB PowerTech, 2021, 101(3): 101.
    [10] BETOVA I, BOJINOV M, KARASTOYANOV V, et al. Effect of water chemistry on the oxide film on Alloy 690 during simulated hot functional testing of a pressurised water reactor[J]. Corrosion Science, 2012, 58: 20-32. doi: 10.1016/j.corsci.2012.01.002
    [11] 陈峰,刘国辉,林巧力,等. 347不锈钢表面堆焊690镍基合金电化学腐蚀性能研究[J]. 动力工程学报,2016, 36(4): 326-330. doi: 10.3969/j.issn.1674-7607.2016.04.012
    [12] XIA D H, ZHU R K, BEHNAMIAN Y, et al. pH Effect on sulfur-induced passivity degradation of Alloy 800 in simulated crevice chemistries[J]. Journal of the Electrochemical Society, 2014, 161(4): C201-C214. doi: 10.1149/2.063404jes
    [13] 吴开源,王勇,赵卫民. 金属结构的腐蚀与防护[M]. 东营: 石油大学出版社,2000: 58-61.
    [14] YE Q F, FENG K, LI Z G, et al. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating[J]. Applied Surface Science, 2017, 396: 1420-1426. doi: 10.1016/j.apsusc.2016.11.176
    [15] LI Q H, YUE T M, GUO Z N, et al. Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process[J]. Metallurgical and Materials Transactions A, 2013, 44(4): 1767-1778. doi: 10.1007/s11661-012-1535-4
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  8
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 修回日期:  2024-04-07
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回