高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耐事故燃料UN芯块研究进展和发展趋势

陈向阳 丁阳 丁捷 李聪 张鑫涛

陈向阳, 丁阳, 丁捷, 李聪, 张鑫涛. 耐事故燃料UN芯块研究进展和发展趋势[J]. 核动力工程, 2024, 45(S1): 130-137. doi: 10.13832/j.jnpe.2024.S1.0130
引用本文: 陈向阳, 丁阳, 丁捷, 李聪, 张鑫涛. 耐事故燃料UN芯块研究进展和发展趋势[J]. 核动力工程, 2024, 45(S1): 130-137. doi: 10.13832/j.jnpe.2024.S1.0130
Chen Xiangyang, Ding Yang, Ding Jie, Li Cong, Zhang Xintao. Research Progress and Development Trend of Accident Tolerant Fuel UN Pellets[J]. Nuclear Power Engineering, 2024, 45(S1): 130-137. doi: 10.13832/j.jnpe.2024.S1.0130
Citation: Chen Xiangyang, Ding Yang, Ding Jie, Li Cong, Zhang Xintao. Research Progress and Development Trend of Accident Tolerant Fuel UN Pellets[J]. Nuclear Power Engineering, 2024, 45(S1): 130-137. doi: 10.13832/j.jnpe.2024.S1.0130

耐事故燃料UN芯块研究进展和发展趋势

doi: 10.13832/j.jnpe.2024.S1.0130
详细信息
    作者简介:

    陈向阳(1989—),男,博士研究生,现主要从事核燃料设计及性能分析方面的研究,E-mail: chenxiangyang3@snerdi.com.cn

    通讯作者:

    丁 捷,E-mail: dingjie@snerdi.com.cn

  • 中图分类号: TL349

Research Progress and Development Trend of Accident Tolerant Fuel UN Pellets

  • 摘要: UN芯块是一种高铀密度、高热导芯块,是一种潜在耐事故燃料芯块。本文从制备工艺和物理性能、环境相容性、辐照性能、芯块-包壳相互作用以及经济性和安全性5个方面对UN芯块研究进展进行了总结。研究结果表明在压水堆中使用UN芯块对提升反应堆安全性利大于弊,总体上有利于促进堆芯事故工况下的安全性,具有降低芯块运行温度、减少事故下储能释放的显著特点,需要解决的主要问题是抗水腐蚀性能差和15N富集成本高,对于提升抗水腐蚀和抗氧化性能的可能解决方案包括掺杂或添加抗氧化成分,高成本问题需要降低15N富集成本。本综述较为全面地总结了UN芯块整体研究进展和发展趋势,对于理解其作为抗耐事故燃料芯块的可行性和存在问题提供参考。

     

  • 图  1  碳热还原氮化法制备的UN粉末的扫描电子显微镜(SEM)图片

    Figure  1.  SEM Images of UN Powder Prepared by Carbothermal Reduction Nitridation Method

    图  2  氢化氮化法制备UN粉体的SEM图片

    Figure  2.  SEM Images of UN Powder Prepared by Hydride-nitridation Method

    图  3  UN芯块腐蚀质量损失与温度的关系(UN-UO2芯块作为对比)

    Figure  3.  Relationship between Corrosion Mass Loss of UN Pellets and Temperature (UN-UO2 Pellet as Comparison)

    图  4  低密度(相对密度<84%)和高密度(相对密度>94%)UN芯块的体积肿胀率

    Figure  4.  Volume Swelling Rates of UN Pellet for Low (Relative Density<84%) and High (Relative Density>94%) Densities

    图  5  1923 K时几种燃料芯块自由辐照肿胀率对比图

    V燃料芯块—燃料芯块的辐照肿胀;$V_{致密{\mathrm{UO}}_2芯块} $—致密UO2的辐照肿胀

    Figure  5.  Comparison of Swelling Rates of Several Fuel Pellets under Free Irradiation at 1923 K

    图  6  相对密度为85%的UN芯块热蠕变速率和辐照蠕变速率与温度关系(20 MPa气压下,裂变速率为1013 n/(cm3·s))

    Figure  6.  Thermal and Irradiation Creep Rates of UN Pellets with 85% Relative Density Depending on Temperatures (fission rate is 1013n/(cm3·s) at 20 MPa)

    图  7  1923 K下几种高温燃料芯块蠕变速率(σ=5 MPa)的对比图

    ε燃料芯块—芯块的蠕变速率;$ \varepsilon _{致密{\mathrm{UO}}_2芯块} $—致密UO2芯块的蠕变速率

    Figure  7.  Comparison of Creep Rate of Several High-Temperature Fuel Pellets at 1923 K (σ=5 MPa)

    图  8  (U, Pu)N燃料元件辐照破裂后的截面图(燃耗为123 MW·d/kg(U, Pu),最大中心温度为1090℃)

    Figure  8.  Cross Section of the Ruptured Irradiated (U, Pu)N Fuel Element (Burnup is 123 MW·d/kg(U, Pu), maximum central temperature is 1090℃)

    表  1  UN芯块基本物理性能

    Table  1.   Basic Physical Properties of UN Pellet

    参数 属性
    热导率/[W·(m·K)−1] $ k = 1.864{e^{ - 2.14P}}{T^{0.361}} $;P的适用范围0~0.2,T的适用范围298~1923 K
    热膨胀系数/K−1 $ \alpha = 7.096 \times {10^{ - 6}} + 1.409 \times {10^{ - 9}}T $,T的适用范围298~2523 K
    杨氏模量/MPa $ E = 0.258{D^{3.002}}(1 - 2.375 \times {10^{ - 5}}T) $;D的适用范围70~100,T的适用范围298~1473 K
    泊松比 $ \upsilon = 1.26 \times {10^{ - 3}}{D^{1.174}} $,D的适用范围70~100
    分解温度/K >1800(真空); >2100(Ar)
    熔点/K 3120
    比热容/[J·(kg·K)−1] 190(298 K);260(2000 K)
    拉伸强度/MPa 148(测试温度不详)
    弯曲强度/MPa 74(293 K);136(1473 K)
     注:k—热导率;P—气孔率;T—温度;α—热膨胀系数;E—杨氏模量;D—理论密度百分数;$ \upsilon $—泊松比
    下载: 导出CSV

    表  2  轻水堆燃料芯块与包壳在正常运行、功率跃升、冷却剂丧失事故、全厂断电事故和反应性引入事故时芯块的理想属性

    Table  2.   Desirable Properties of LWR Fuel Pellets under Normal Operation, Power Ramps, Loss-of-coolant Accident, Station Blackout and Reactivity Insertion Accident

    芯块性能 对不同运行工况的影响
    正常运行 功率跃升 冷却剂丧失事故 全厂断电事故 反应性引入事故
    熔点
    热导率
    比热容
    热膨胀系数
    蠕变速率
    强度
    辐照肿胀
      注: ↑表示需要提高的性能;↓表示该性能需要降低;—表示该项性能对该事故工况下不敏感
    下载: 导出CSV
  • [1] OTT L J, ROBB K R, WANG D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J]. Journal of Nuclear Materials, 2014, 448(1-3): 520
    [2] 潘昕怿,兰兵,贾斌,等. 事故容错燃料包壳和芯块材料中子学分析[J]. 核电子学与探测技术,2016, 36(9): 958-961,965. doi: 10.3969/j.issn.0258-0934.2016.09.018
    [3] United States Nuclear Regulatory Commission. Longer term accident tolerant fuel technologies[EB/OL]. (2021-01-12)[2022-04-15]. https://www.nrc.gov/reactors/power/atf/technologies/longer-term.html.
    [4] 尹邦跃,屈哲昊. 热压烧结UN陶瓷芯块的性能[J]. 原子能科学技术,2014, 48(10): 1850-1856. doi: 10.7538/yzk.2014.48.10.1850
    [5] BLANCHARD J, BUTT D, MEYER M, et al. Development of advanced high uranium density fuels for light water reactors: project no. 11-3041[R]. USA: U. S. Department of Energy, 2016.
    [6] JAQUES B J, WATKINS J, CROTEAU J R, et al. Synthesis and sintering of UN-UO2 fuel composites[J]. Journal of Nuclear Materials, 2015, 466: 745-754. doi: 10.1016/j.jnucmat.2015.06.029
    [7] ALEXANDER C A. Metal-actinide nitride nuclear fuel: US, 4624828[P]. 1986-11-25.
    [8] 尹邦跃,屈哲昊. 氮化铀燃料粉末和芯块的制备方法: 中国,201310403675.6[P]. 2013-12-25.
    [9] MUTA H, KUROSAKI K, UNO M, et al. Thermal and mechanical properties of uranium nitride prepared by SPS technique[J]. Journal of Materials Science, 2008, 43(19): 6429-6434. doi: 10.1007/s10853-008-2731-x
    [10] HAYES S L, THOMAS J K, PEDDICORD K L. Material property correlations for uranium mononitride: I. Physical properties[J]. Journal of Nuclear Materials, 1990, 171(2-3): 262-270. doi: 10.1016/0022-3115(90)90374-V
    [11] HAYES S L, THOMAS J K, PEDDICORD K L. Material property correlations for uranium mononitride: II. Mechanical properties[J]. Journal of Nuclear Materials, 1990, 171(2-3): 271-288. doi: 10.1016/0022-3115(90)90375-W
    [12] 苏著亭,杨继材,柯国土. 空间核动力[M]. 上海: 上海交通大学出版社,2016: 211.
    [13] KEMPTER C P, ELLIOTT R O. Thermal expansion of 〈UN〉, 〈UO2〉, 〈UO2·ThO2〉, and〈ThO2〉[J]. The Journal of Chemical Physics, 1959, 30(6): 1524-1526. doi: 10.1063/1.1730230
    [14] YOUINOU G J, SEN R S. Impact of accident-tolerant fuels and claddings on the overall fuel cycle: a preliminary systems analysis[J]. Nuclear Technology, 2014, 188(2): 123-138. doi: 10.13182/NT14-22
    [15] JAQUES B J, WATKINS J, BUTT D P, et al. Hydrothermal corrosion studies on nitride fuels[C]//Top Fuel 2016: LWR Fuels with Enhanced Safety and Performance. Boise: American Nuclear Society, 2016.
    [16] LESSING P A. Oxidation protection of uranium nitride fuel using liquid phase sintering: INL/EXT-12-24974[R]. Idaho Falls: Idaho National Laboratory, 2012.
    [17] FENG B, KARAHAN A, KAZIMI M S. Steady-state fuel behavior modeling of nitride fuels in FRAPCON-EP[J]. Journal of Nuclear Materials, 2012, 427(1-3): 30-38. doi: 10.1016/j.jnucmat.2012.04.011
    [18] BAUER A A, BROWN J B, FROMM E O, et al. Mixed-nitride fuel irradiation performance[C]//Proceedings of ANS Conference on Fast Reactor Fuel Element Technology. New Orleans: Battelle Memorial Inst. , 1971: 785-818.
    [19] ROUTBORT J L, SINGH R N. Elastic, diffusional, and mechanical properties of carbide and nitride nuclear fuels-a review[J]. Journal of Nuclear Materials, 1975, 58(1): 78-114. doi: 10.1016/0022-3115(75)90169-5
    [20] TANAKA K, MAEDA K, KATSUYAMA K, et al. Fission gas release and swelling in uranium–plutonium mixed nitride fuels[J]. Journal of Nuclear Materials, 2004, 327(2-3): 77-87. doi: 10.1016/j.jnucmat.2004.01.002
    [21] ROGOZKIN B D, STEPENNOVA N M, PROSHKIN A A. Mononitride fuel for fast reactors[J]. Atomic Energy, 2003, 95(3): 624-636. doi: 10.1023/B:ATEN.0000007886.86817.32
    [22] ARAI Y, MAEDA A, SHIOZAWA K I, et al. Chemical forms of solid fission products in the irradiated uranium-plutonium mixed nitride fuel[J]. Journal of Nuclear Materials, 1994, 210(1-2): 161-166. doi: 10.1016/0022-3115(94)90233-X
    [23] ALEKSEEV S V, VYBYVANETS V I, GONTAR’ A S, et al. Promising fuel materials for thermionic nuclear power installations[J]. Atomic Energy, 2014, 115(6): 391-401. doi: 10.1007/s10512-014-9801-8
    [24] RICHTER K, SARI C. Investigation of the operational limits of uranium-plutonium nitride fuels[J]. Journal of Nuclear Materials, 1991, 184(3): 167-176. doi: 10.1016/0022-3115(91)90537-H
    [25] POPLAVSKII V M, TSIBULYA A M, KHOMYAKOV Y S, et al. Core and fuel cycle for an advanced sodium-cooled fast reactor[J]. Atomic Energy, 2010, 108(4): 260-266. doi: 10.1007/s10512-010-9287-y
    [26] KAZIMI M S, DOBISESKY J, CARPENTER D M, et al. PWR cores with silicon carbide cladding: MIT-NFC;PR-124[R]. California: Electric Power Research Institute, 2011.
    [27] TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. doi: 10.1016/j.jnucmat.2017.12.043
    [28] YANG K, KARDOULAKI E, ZHAO D, et al. Cr-incorporated uranium nitride composite fuels with enhanced mechanical performance and oxidation resistance[J]. Journal of Nuclear Materials, 2022, 559: 153486. doi: 10.1016/j.jnucmat.2021.153486
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  25
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-15
  • 修回日期:  2024-04-25
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回