Safety Analysis on Accident-tolerant Fuel during LBLOCA Based on LOCUST Code
-
摘要: 事故容错燃料(ATF)旨在提高核燃料在正常运行工况和事故工况下的安全特性。为评估ATF在大型商业压水堆大破口失水事故(LBLOCA)中的安全性能,本研究基于LOCUST程序,对采用UO2-Cr涂层锆合金包壳燃料的华龙一号(HPR1000)在LBLOCA不同阶段的主要热工水力现象和关键影响参数进行了分析和说明。结果表明,相比传统的UO2-Zr燃料,UO2-Cr涂层锆合金包壳燃料能降低LBLOCA下的包壳峰值温度(PCT)和包壳氧化膜厚度,提升了事故安全裕量,具有更好的事故容错性。
-
关键词:
- 事故容错燃料(ATF) /
- 大破口失水事故(LBLOCA) /
- 华龙一号(HPR1000) /
- 安全分析
Abstract: Accident tolerant fuel (ATF) aims to improve the safety characteristics of nuclear fuel under normal operating conditions and accidents. In order to evaluate the safety performance of ATF in large break loss-of-coolant accident (LBLOCA) of large commercial pressurized water reactor, based on LOCUST code, this study analyzes and describes the main thermal hydraulic phenomena and key influencing parameters of HPR1000 using using UO2-Cr coated zirconium alloy cladding fuel at different stages of LBLOCA. The results indicate that compared to the traditional UO2-Zr fuel, UO2-Cr coated zirconium alloy cladding fuel can reduce the peak cladding temperature (PCT) and the thickness of cladding oxide film under LBLOCA, improve the safety margin in accidents, and have better accident-tolerance characteristics.-
Key words:
- Accident tolerant fuel /
- Large break loss-of-coolant accident /
- HPR1000 /
- Safety analysis
-
表 1 瞬态燃料关键参数
Table 1. Key Fuel Parameters during the Transient
参数 锆合金包壳 Cr涂层锆合金包壳 PCT1/K 1443 1432 PCT2/K 1431 1269 PCT3/K 1461 1410 瞬态局部最大氧化膜厚度①/μm 35.7 19.5② 总产氢量/kg 1.03 1.64×10−3 注:①瞬态结束时单根燃料棒同一高度位置上包壳内、外表面瞬态生成的氧化膜厚度之和的最大值;②其中包壳外表面氧化膜厚度为0.09 μm -
[1] ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: a perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379. doi: 10.1016/j.jnucmat.2013.12.005 [2] 国家发展改革委,国家能源局. 能源技术革命创新行动计划(2016-2030年)[EB/OL]. (2016-03-01)[2023-05-03]. https://www.gov.cn/xinwen/2016-06/01/5078628/files/d30fbe1ca23e45f3a8de7e6c563c9ec6.pdf. [3] 武小莉,汪洋,张亚培,等. 事故容错燃料在大破口事故下的安全分析[J]. 原子能科学技术,2016, 50(6): 1065-1071. doi: 10.7538/yzk.2016.50.06.1065 [4] 孙微,李铁萍,庄少欣,等. 大破口事故下事故容错燃料热工水力行为分析[J]. 核科学与工程,2016, 36(6): 822-826. doi: 10.3969/j.issn.0258-0918.2016.06.016 [5] 杨红发,巫英伟,尹莎莎,等. 事故容错燃料安全性能初步分析[J]. 原子能科学技术,2020, 54(8): 1441-1447. doi: 10.7538/yzk.2019.youxian.0563 [6] 徐财红,琚忠云,袁红胜,等. 两相流热工水力系统分析软件LOCUST-1.2开发概述[C]//中国核学会核反应堆热工流体力学分会第一届学术年会. 重庆,2021. [7] 王伟伟,熊怡然,鲍国刚,等. LOCUST系统分析软件的LOFT试验工况确认[C]//中国核学会核反应堆热工流体力学分会第二届学术年会. 哈尔滨,2022. [8] 丁雯,张大林,张魁,等. 基于ECC安注热混合试验的LOCUST 1.2分析与验证[J]. 原子能科学技术,2022, 56(8): 1515-1522. doi: 10.7538/yzk.2022.youxian.0379 [9] Acceptance criteria for emergency core cooling systems for light water nuclear power reactors, Appendix K, ECCS evaluation models: 10 CFR 50.46[S]. U. S. Nuclear Regulatory Commission, 1992. [10] BRACHET J C, ROUESNE E, RIBIS J, et al. High temperature steam oxidation of chromium-coated zirconium-based alloys: kinetics and process[J]. Corrosion Science, 2020, 167: 108537. doi: 10.1016/j.corsci.2020.108537 [11] DUMERVAL M, HOUMAIRE Q, BRACHET J C, et al. Behavior of chromium coated M5 claddings upon thermal ramp tests under internal pressure (loss-of-coolant accident conditions) (for poster session)[C]//Proceedings of the TopFuel 2018. Ptague: European Nuclear Society, 2018. [12] POWERS D A, MEYER R O. Cladding swelling and rupture models for LOCA analysis[R]. Washington: Division of Systems Safety, Office of Nuclear Reactor Regulation, 1980.