高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ODS-FeCrAl合金管材内压爆破、蠕变及疲劳性能的研究

刘洋 卢志威 葛洪恩 吴利翔 薛佳祥 廖业宏

刘洋, 卢志威, 葛洪恩, 吴利翔, 薛佳祥, 廖业宏. ODS-FeCrAl合金管材内压爆破、蠕变及疲劳性能的研究[J]. 核动力工程, 2024, 45(S1): 145-151. doi: 10.13832/j.jnpe.2024.S1.0145
引用本文: 刘洋, 卢志威, 葛洪恩, 吴利翔, 薛佳祥, 廖业宏. ODS-FeCrAl合金管材内压爆破、蠕变及疲劳性能的研究[J]. 核动力工程, 2024, 45(S1): 145-151. doi: 10.13832/j.jnpe.2024.S1.0145
Liu Yang, Lu Zhiwei, Ge Hongen, Wu Lixiang, Xue Jiaxiang, Liao Yehong. Study on Internal Pressure Burst, Creep and Fatigue Properties of ODS-FeCrAl Alloy Tube[J]. Nuclear Power Engineering, 2024, 45(S1): 145-151. doi: 10.13832/j.jnpe.2024.S1.0145
Citation: Liu Yang, Lu Zhiwei, Ge Hongen, Wu Lixiang, Xue Jiaxiang, Liao Yehong. Study on Internal Pressure Burst, Creep and Fatigue Properties of ODS-FeCrAl Alloy Tube[J]. Nuclear Power Engineering, 2024, 45(S1): 145-151. doi: 10.13832/j.jnpe.2024.S1.0145

ODS-FeCrAl合金管材内压爆破、蠕变及疲劳性能的研究

doi: 10.13832/j.jnpe.2024.S1.0145
基金项目: 国家自然基金(U20B2010);国防科工局十三五核能开发科研项目(2023ZCAFD001);广东省自然科学基金(2022A1515010735);国家自然基金-企业创新发展联合基金(2021M70302)
详细信息
    作者简介:

    刘 洋(1991—),男,硕士研究生,现主要从事燃料材料性能分析方面的研究,E-mail: liuyangkeyi@163.com

  • 中图分类号: TL352.1;TG174.444

Study on Internal Pressure Burst, Creep and Fatigue Properties of ODS-FeCrAl Alloy Tube

  • 摘要: 采用透射电子显微镜、内压爆破、内压蠕变及内压疲劳试验机等研究了氧化物弥散强化(ODS)FeCrAl合金管材显微结构、内压爆破、内压蠕变及内压疲劳性能。结果表明,ODS-FeCrAl合金管材基体中弥散分布大量的纳米第二相颗粒,平均直径约为8.76 nm,体积数密度为6.8×1022 m–3。ODS-FeCrAl合金管材室温爆破强度高达1158 MPa;随着温度的升高,内压爆破强度逐渐下降;1000℃时,ODS-FeCrAl合金管材未丧失承压能力,爆破强度为81 MPa。350℃/30 MPa试验条件下,ODS-FeCrAl合金管材表现出优异的抗内压蠕变性能,蠕变变形量为0.09%。350℃下疲劳峰值加载压力低于30 MPa时,ODS-FeCrAl合金管材1000000次循环加载未出现疲劳失效。ODS-FeCrAl合金管材具有优异的爆破、抗内压蠕变和疲劳性能。

     

  • 图  1  ODS-FeCrAl合金管材基体中纳米析出相颗粒微观形貌及尺寸分布

    Figure  1.  Morphology and Size Distribution of Nano-second Phase Particles Dispersed in the Matrix of ODS-FeCrAl Alloy Tube

    图  2  ODS-FeCrAl合金管材t-EBSD的物相分析

    Figure  2.  Phase Analysis of ODS-FeCrAl Alloy Tube by t-EBSD

    图  3  ODS-FeCrAl合金管材爆破强度

    Figure  3.  Burst Strength of ODS-FeCrAl Alloy Tube

    图  4  ODS-FeCrAl合金管材破口宏观和微观形貌

    Figure  4.  Macro and Micro Morphology of Break of ODS-FeCrAl Alloy Tube

    图  5  ODS-FeCrAl合金管材350℃保压1000 h后样品形貌

    Figure  5.  Morphology of ODS-FeCrAl Alloy Tube after Internal Pressure Creep Test at 350°C for 1000 h

    图  6  ODS-FeCrAl合金管材350℃内压疲劳试验后样品形貌

    Figure  6.  Morphology of ODS-FeCrAl Alloy Tube after Internal Pressure Fatigue Test at 350℃

    表  1  ODS-FeCrAl合金管材内压蠕变试结果

    Table  1.   Internal Pressure Creep Test Results of ODS-FeCrAl Alloy Tube

    温度/℃ 压力/MPa 时间/h 蠕变应变/%
    350 20 1000 0.08
    350 30 1000 0.09
    下载: 导出CSV

    表  2  ODS-FeCrAl合金管材内压疲劳试验结果

    Table  2.   Internal Pressure Fatigue Test Results of ODS-FeCrAl Alloy Tube

    温度/℃ 峰值压力/MPa 加载次数/次 失效应变/%
    350 20 1000000 0.05
    350 30 1000000 0.08
    350 40 7820 0.13
    350 50 4952 0.29
    下载: 导出CSV
  • [1] VISWANATHAN U K, SAH D N, RATH B N, et al. Measurement of fission gas release, internal pressure and cladding creep rate in the fuel pins of PHWR bundle of normal discharge burnup[J]. Journal of Nuclear Materials, 2009, 392(3): 545-551. doi: 10.1016/j.jnucmat.2009.04.021
    [2] YADAV A K, MAJUMDAR P, KUMAR R, et al. Experimental simulation of asymmetric heat up of coolant channel under small break LOCA condition for PHWR[J]. Nuclear Engineering and Design, 2013, 255: 138-145. doi: 10.1016/j.nucengdes.2012.11.002
    [3] SAWARN T K, BANERJEE S, PANDIT K M, et al. Study of clad ballooning and rupture behavior of fuel pins of Indian PHWR under simulated LOCA condition[J]. Nuclear Engineering and Design, 2014, 280: 501-510. doi: 10.1016/j.nucengdes.2014.10.011
    [4] KHAN M K, PATHAK M, DEO A K, et al. Burst criterion for zircaloy-4 fuel cladding in an inert environment[J]. Nuclear Engineering and Design, 2013, 265: 886-894. doi: 10.1016/j.nucengdes.2013.08.071
    [5] LIMON R, LEHMANN S. A creep rupture criterion for Zircaloy-4 fuel cladding under internal pressure[J]. Journal of Nuclear Materials, 2004, 335(3): 322-334. doi: 10.1016/j.jnucmat.2004.07.039
    [6] O’DONNELL W J, LANGER B F. Fatigue design basis for Zircaloy components[J]. Nuclear Science and Engineering, 1964, 20(1): 1-12. doi: 10.13182/NSE64-A19269
    [7] YAMAMOTO Y, PINT B A, TERRANI K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. Journal of Nuclear Materials, 2015, 467: 703-716. doi: 10.1016/j.jnucmat.2015.10.019
    [8] GAMBLE K A, BARANI T, PIZZOCRI D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491: 55-66. doi: 10.1016/j.jnucmat.2017.04.039
    [9] YANO Y, TANNO T, OKA H, et al. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions[J]. Journal of Nuclear Materials, 2017, 487: 229-237. doi: 10.1016/j.jnucmat.2017.02.021
    [10] WU S J, LI J, LI C J, et al. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging[J]. Journal of Materials Science & Technology, 2021, 83: 49-57.
    [11] LI J, WU S J, MA P, et al. Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process[J]. Materials Science and Engineering: A, 2019, 757: 42-51. doi: 10.1016/j.msea.2019.04.088
    [12] DRYEPONDT S, UNOCIC K A, HOELZER D T, et al. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding[J]. Journal of Nuclear Materials, 2018, 501: 59-71. doi: 10.1016/j.jnucmat.2017.12.035
    [13] 常宇宏. 氧化物弥散强化铁素体合金制备及性能研究[D]. 北京: 北京科技大学,2014.
    [14] CHO H S, OHKUBO H, IWATA N, et al. Improvement of compatibility of advanced ferritic steels with super critical pressurized water toward a higher thermally efficient water-cooled blanket system[J]. Fusion Engineering and Design, 2006, 81(8-14): 1071-1076. doi: 10.1016/j.fusengdes.2005.09.056
    [15] CASTRO V D, JENKINS M. Oxide nanoparticle dispersion in an ODS/Fe12Cr model alloy[J]. Microscopy and Microanalysis, 2008, 14(S2): 646-647. doi: 10.1017/S1431927608083335
    [16] LIU T, WANG C X, SHEN H L, et al. The effects of Cr and Al concentrations on the oxidation behavior of oxide dispersion strengthened ferritic alloys[J]. Corrosion Science, 2013, 76: 310-316. doi: 10.1016/j.corsci.2013.07.004
    [17] KLIMENKOV M. Quantitative measurement of argon inside of nano-sized bubbles in ODS steels[J]. Journal of Nuclear Materials, 2011, 411(1-3): 160-162. doi: 10.1016/j.jnucmat.2011.01.104
    [18] MORLEY N B, ABDOU M A, ANDERSON M, et al. Overview of fusion nuclear technology in the US[J]. Fusion Engineering and Design, 2006, 81(1-7): 33-43. doi: 10.1016/j.fusengdes.2005.06.359
    [19] OKSIUTA Z, BALUC N. Optimization of the chemical composition and manufacturing route for ODS RAF steels for fusion reactor application[J]. Nuclear Fusion, 2009, 49(5): 055003. doi: 10.1088/0029-5515/49/5/055003
    [20] GAO R, ZHANG T, WANG X P, et al. Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum[J]. Journal of Nuclear Materials, 2014, 444(1-3): 462-468. doi: 10.1016/j.jnucmat.2013.10.038
    [21] 温敦古,谭军,陈刘涛,等. 核用锆合金包壳管内压爆破试验及性能研究[J]. 材料研究与应用,2016, 10(1): 48-52. doi: 10.3969/j.issn.1673-9981.2016.01.010
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  14
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-26
  • 修回日期:  2024-04-28
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回