Study on Internal Pressure Burst, Creep and Fatigue Properties of ODS-FeCrAl Alloy Tube
-
摘要: 采用透射电子显微镜、内压爆破、内压蠕变及内压疲劳试验机等研究了氧化物弥散强化(ODS)FeCrAl合金管材显微结构、内压爆破、内压蠕变及内压疲劳性能。结果表明,ODS-FeCrAl合金管材基体中弥散分布大量的纳米第二相颗粒,平均直径约为8.76 nm,体积数密度为6.8×1022 m–3。ODS-FeCrAl合金管材室温爆破强度高达1158 MPa;随着温度的升高,内压爆破强度逐渐下降;1000℃时,ODS-FeCrAl合金管材未丧失承压能力,爆破强度为81 MPa。350℃/30 MPa试验条件下,ODS-FeCrAl合金管材表现出优异的抗内压蠕变性能,蠕变变形量为0.09%。350℃下疲劳峰值加载压力低于30 MPa时,ODS-FeCrAl合金管材1000000次循环加载未出现疲劳失效。ODS-FeCrAl合金管材具有优异的爆破、抗内压蠕变和疲劳性能。
-
关键词:
- ODS-FeCrAl 合金管材 /
- 显微结构 /
- 内压爆破 /
- 内压蠕变 /
- 内压疲劳
Abstract: The microstructure, internal pressure burst, creep and fatigue properties of oxide dispersion strengthened (ODS)-FeCrAl alloy tube were studied by transmission electron microscopy (TEM), internal pressure burst, creep and fatigue test machine. The results show that a large number of nano-second phase particles are dispersed in the matrix of ODS-FeCrAl alloy tube, with an average diameter of about 8.76 nm and a volume density of 6.8×1022 m–3. The burst strength of ODS-FeCrAl alloy tube is 1158 MPa at room temperature; The burst strength of the ODS-FeCrAl alloy decrease gradually with the increase of temperature; At 1000℃, the ODS-FeCrAl alloy tube does not lose its pressure-bearing ability, and its burst strength is 81 MPa. The ODS-FeCrAl alloy tube shows excellent internal pressure creep resistance (the creep deformation is 0.9%) under the test condition of 350℃/30 MPa. When the peak fatigue loading pressure is lower than 30 MPa at 350°C, there is no fatigue failure of ODS-FeCrAl alloy tube after 1000000 cycles of loading. The internal pressure burst, creep, and fatigue properties of ODS FeCrAl alloy tube are significantly excellent. -
表 1 ODS-FeCrAl合金管材内压蠕变试结果
Table 1. Internal Pressure Creep Test Results of ODS-FeCrAl Alloy Tube
温度/℃ 压力/MPa 时间/h 蠕变应变/% 350 20 1000 0.08 350 30 1000 0.09 表 2 ODS-FeCrAl合金管材内压疲劳试验结果
Table 2. Internal Pressure Fatigue Test Results of ODS-FeCrAl Alloy Tube
温度/℃ 峰值压力/MPa 加载次数/次 失效应变/% 350 20 1000000 0.05 350 30 1000000 0.08 350 40 7820 0.13 350 50 4952 0.29 -
[1] VISWANATHAN U K, SAH D N, RATH B N, et al. Measurement of fission gas release, internal pressure and cladding creep rate in the fuel pins of PHWR bundle of normal discharge burnup[J]. Journal of Nuclear Materials, 2009, 392(3): 545-551. doi: 10.1016/j.jnucmat.2009.04.021 [2] YADAV A K, MAJUMDAR P, KUMAR R, et al. Experimental simulation of asymmetric heat up of coolant channel under small break LOCA condition for PHWR[J]. Nuclear Engineering and Design, 2013, 255: 138-145. doi: 10.1016/j.nucengdes.2012.11.002 [3] SAWARN T K, BANERJEE S, PANDIT K M, et al. Study of clad ballooning and rupture behavior of fuel pins of Indian PHWR under simulated LOCA condition[J]. Nuclear Engineering and Design, 2014, 280: 501-510. doi: 10.1016/j.nucengdes.2014.10.011 [4] KHAN M K, PATHAK M, DEO A K, et al. Burst criterion for zircaloy-4 fuel cladding in an inert environment[J]. Nuclear Engineering and Design, 2013, 265: 886-894. doi: 10.1016/j.nucengdes.2013.08.071 [5] LIMON R, LEHMANN S. A creep rupture criterion for Zircaloy-4 fuel cladding under internal pressure[J]. Journal of Nuclear Materials, 2004, 335(3): 322-334. doi: 10.1016/j.jnucmat.2004.07.039 [6] O’DONNELL W J, LANGER B F. Fatigue design basis for Zircaloy components[J]. Nuclear Science and Engineering, 1964, 20(1): 1-12. doi: 10.13182/NSE64-A19269 [7] YAMAMOTO Y, PINT B A, TERRANI K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. Journal of Nuclear Materials, 2015, 467: 703-716. doi: 10.1016/j.jnucmat.2015.10.019 [8] GAMBLE K A, BARANI T, PIZZOCRI D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491: 55-66. doi: 10.1016/j.jnucmat.2017.04.039 [9] YANO Y, TANNO T, OKA H, et al. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions[J]. Journal of Nuclear Materials, 2017, 487: 229-237. doi: 10.1016/j.jnucmat.2017.02.021 [10] WU S J, LI J, LI C J, et al. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging[J]. Journal of Materials Science & Technology, 2021, 83: 49-57. [11] LI J, WU S J, MA P, et al. Microstructure evolution and mechanical properties of ODS FeCrAl alloys fabricated by an internal oxidation process[J]. Materials Science and Engineering: A, 2019, 757: 42-51. doi: 10.1016/j.msea.2019.04.088 [12] DRYEPONDT S, UNOCIC K A, HOELZER D T, et al. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding[J]. Journal of Nuclear Materials, 2018, 501: 59-71. doi: 10.1016/j.jnucmat.2017.12.035 [13] 常宇宏. 氧化物弥散强化铁素体合金制备及性能研究[D]. 北京: 北京科技大学,2014. [14] CHO H S, OHKUBO H, IWATA N, et al. Improvement of compatibility of advanced ferritic steels with super critical pressurized water toward a higher thermally efficient water-cooled blanket system[J]. Fusion Engineering and Design, 2006, 81(8-14): 1071-1076. doi: 10.1016/j.fusengdes.2005.09.056 [15] CASTRO V D, JENKINS M. Oxide nanoparticle dispersion in an ODS/Fe12Cr model alloy[J]. Microscopy and Microanalysis, 2008, 14(S2): 646-647. doi: 10.1017/S1431927608083335 [16] LIU T, WANG C X, SHEN H L, et al. The effects of Cr and Al concentrations on the oxidation behavior of oxide dispersion strengthened ferritic alloys[J]. Corrosion Science, 2013, 76: 310-316. doi: 10.1016/j.corsci.2013.07.004 [17] KLIMENKOV M. Quantitative measurement of argon inside of nano-sized bubbles in ODS steels[J]. Journal of Nuclear Materials, 2011, 411(1-3): 160-162. doi: 10.1016/j.jnucmat.2011.01.104 [18] MORLEY N B, ABDOU M A, ANDERSON M, et al. Overview of fusion nuclear technology in the US[J]. Fusion Engineering and Design, 2006, 81(1-7): 33-43. doi: 10.1016/j.fusengdes.2005.06.359 [19] OKSIUTA Z, BALUC N. Optimization of the chemical composition and manufacturing route for ODS RAF steels for fusion reactor application[J]. Nuclear Fusion, 2009, 49(5): 055003. doi: 10.1088/0029-5515/49/5/055003 [20] GAO R, ZHANG T, WANG X P, et al. Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum[J]. Journal of Nuclear Materials, 2014, 444(1-3): 462-468. doi: 10.1016/j.jnucmat.2013.10.038 [21] 温敦古,谭军,陈刘涛,等. 核用锆合金包壳管内压爆破试验及性能研究[J]. 材料研究与应用,2016, 10(1): 48-52. doi: 10.3969/j.issn.1673-9981.2016.01.010