Investigation on Corrosion Model of Cr-coated Zirconium Alloy Cladding
-
摘要: 作为耐事故燃料(ATF)包壳候选材料之一,Cr涂层可显著提高锆合金包壳的抗腐蚀和抗氧化性能,有望延长服役寿期。为评估Cr涂层锆合金包壳腐蚀氧化行为,本文建立了Cr涂层锆合金包壳在压水堆正常运行工况下的腐蚀模型,并基于文献实验数据对模型进行了验证;基于该模型进行了热流密度和质量流速对Cr涂层锆合金包壳的腐蚀影响分析。结果表明腐蚀厚度随热流密度的增加而增加;此外,冷却剂质量流速的增加引起包壳壁温减小,最终导致包壳腐蚀厚度减小。
-
关键词:
- 压水堆 /
- 耐事故燃料(ATF) /
- Cr涂层锆包壳 /
- 腐蚀模型
Abstract: As one of the candidate materials for accident tolerant fuel (ATF) cladding, Cr coating can significantly improve the corrosion resistance and oxidation resistance of zirconium alloy cladding, which is expected to prolong the service life. In order to evaluate the corrosion and oxidation behavior of Cr-coated zirconium alloy cladding, a corrosion model of Cr-coated zirconium alloy cladding under normal operating conditions of PWR was established in this paper, and the model was verified based on the experimental data in the literature. Based on this model, the effects of heat flux and mass flow rate on the corrosion of Cr-coated zirconium alloy cladding were analyzed. The results show that the corrosion thickness increases with the increase of heat flux. In addition, the increase of coolant mass flow rate leads to the decrease of cladding wall temperature, which eventually leads to the decrease of cladding corrosion thickness.-
Key words:
- Pressurized water reactor /
- ATF /
- Cr-coated zirconium cladding /
- Corrosion model
-
表 1 输入参数汇总
Table 1. Summary of Input Parameters
参数 数值 入口压力/MPa 15.5 入口温度/℃ 286.3 最大热流密度/(MW·m−2) 1.0 入口质量流速/(kg·m−2·s−1) 3330 栅距/mm 12.6 长度/mm 3658 时间步长/d 1 总时长/d 500 表 2 Cr涂层锆合金包壳腐蚀实验工况
Table 2. Corrosion Experimental Conditions of Cr-coated Zirconium Alloy Cladding
研究者 材料 热工条件 水化学条件 腐蚀时间/d KREJČÍ E110
(Cr涂层)360℃ B:1050 mg/L
K:15.9 mg/L
Li:1 mg/L225 Isabel Zr-4
(Cr涂层)18.7 MPa/360℃ Li:10 mg/L
B:650 mg/L60 Wei Zr-4
(Cr涂层)18.6 MPa/360℃ B:200 mg/L
Li:1.2 mg/L83 -
[1] 段振刚,陈平,周毅,等. 耐事故燃料用Cr涂层锆合金包壳研究进展[J]. 核技术,2022, 45(3): 030001. doi: 10.11889/j.0253-3219.2022.hjs.45.030001 [2] 杨健乔,恽迪,刘俊凯. 铬涂层锆合金耐事故燃料包壳材料事故工况行为研究进展[J]. 材料导报,2022, 36(1): 20080283. doi: 10.11896/cldb.20080283 [3] BISCHOFF J, VAUGLIN C, DELAFOY C, et al. Development of Cr-coated zirconium alloy cladding for enhanced accident tolerance[C]. Boise: Topfuel 2016-Light Water Reactor (LWR) Fuel Performance Meeting, 2016. [4] BISCHOFF J, DELAFOY C, VAUGLIN C, et al. AREVA NP's enhanced accident-tolerant fuel developments: focus on Cr-coated M5 cladding[J]. Nuclear Engineering and Technology, 2018, 50(2): 223-228. doi: 10.1016/j.net.2017.12.004 [5] MA H B, ZHANG H L, HU L J, et al. Corrosion behavior of Cr-coated zirconium alloy cladding in LiOH/H3BO3-containing water at 360℃[J]. Corrosion Science, 2023, 222: 111386. doi: 10.1016/j.corsci.2023.111386 [6] BRACHET J C, IDARRAGA-TRUJILLO I, LE FLEM M, et al. Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J]. Journal of Nuclear Materials, 2019, 517: 268-285. doi: 10.1016/j.jnucmat.2019.02.018 [7] WEI T G, ZHANG R Q, YANG H Y, et al. Microstructure, corrosion resistance and oxidation behavior of Cr-coatings on Zircaloy-4 prepared by vacuum arc plasma deposition[J]. Corrosion Science, 2019, 158: 108077. doi: 10.1016/j.corsci.2019.06.029 [8] KREJČÍ J, KABÁTOVÁ J, MANOCH F, et al. Development and testing of multicomponent fuel cladding with enhanced accidental performance[J]. Nuclear Engineering and Technology, 2020, 52(3): 597-609. doi: 10.1016/j.net.2019.08.015 [9] AIEXANDER VASILIEV. Analytical modelling of ATF chromium-coated Zr-based cladding high temperature oxidation in steam and steam-air atmosphere[C]. Bled: Proceedings of International Conference Nuclear Energy for New Europe, 2021. [10] F GARZAROLLI, W JUNG, H SHOENFELD, et al. "Waterside Corrosion of Zircaloy Fuel Rods": EPRI NP-2789[R]. Palo: AG and Combustion engineering, Inc., Electric Power Research Institute, 1982. [11] YOUNG D J, COHEN M. Oxidation behavior of chromium between 300° and 600℃[J]. Journal of the Electrochemical Society, 1977, 124(5): 769-774. doi: 10.1149/1.2133404 [12] WILLIAMS R K, GRAVES R S, MCELROY D L. Thermal conductivity of Cr2O3 in the vicinity of the Neel transition[J]. Journal of the American Ceramic Society, 1984, 67(7): C-151-C-152. [13] Idarraga-Trujillo I, Flem M L, Brachet J C, et al. Assessment at CEA of coated nuclear fuel cladding for LWRs with increasing margins in LOCA and beyond LOCA conditions[C]//LWR Fuel Performance Meeting/TopFuel 2013. North Carolina: The American Nuclear Society, 2013.