高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr涂层锆合金包壳腐蚀模型研究

沈勇 曾谢虎 段振刚 文青龙 袁波 何梁 高士鑫

沈勇, 曾谢虎, 段振刚, 文青龙, 袁波, 何梁, 高士鑫. Cr涂层锆合金包壳腐蚀模型研究[J]. 核动力工程, 2024, 45(S1): 175-180. doi: 10.13832/j.jnpe.2024.S1.0175
引用本文: 沈勇, 曾谢虎, 段振刚, 文青龙, 袁波, 何梁, 高士鑫. Cr涂层锆合金包壳腐蚀模型研究[J]. 核动力工程, 2024, 45(S1): 175-180. doi: 10.13832/j.jnpe.2024.S1.0175
Shen Yong, Zeng Xiehu, Duan Zhengang, Wen Qinglong, Yuan Bo, He Liang, Gao Shixin. Investigation on Corrosion Model of Cr-coated Zirconium Alloy Cladding[J]. Nuclear Power Engineering, 2024, 45(S1): 175-180. doi: 10.13832/j.jnpe.2024.S1.0175
Citation: Shen Yong, Zeng Xiehu, Duan Zhengang, Wen Qinglong, Yuan Bo, He Liang, Gao Shixin. Investigation on Corrosion Model of Cr-coated Zirconium Alloy Cladding[J]. Nuclear Power Engineering, 2024, 45(S1): 175-180. doi: 10.13832/j.jnpe.2024.S1.0175

Cr涂层锆合金包壳腐蚀模型研究

doi: 10.13832/j.jnpe.2024.S1.0175
基金项目: 国家自然科学基金(52201091)
详细信息
    作者简介:

    沈 勇(1996—),男,硕士研究生,现主要从事核反应堆热工水力研究,E-mail: 2470898965@qq.com

    通讯作者:

    段振刚,E-mail: zgduan96@163.com

  • 中图分类号: TL334

Investigation on Corrosion Model of Cr-coated Zirconium Alloy Cladding

  • 摘要: 作为耐事故燃料(ATF)包壳候选材料之一,Cr涂层可显著提高锆合金包壳的抗腐蚀和抗氧化性能,有望延长服役寿期。为评估Cr涂层锆合金包壳腐蚀氧化行为,本文建立了Cr涂层锆合金包壳在压水堆正常运行工况下的腐蚀模型,并基于文献实验数据对模型进行了验证;基于该模型进行了热流密度和质量流速对Cr涂层锆合金包壳的腐蚀影响分析。结果表明腐蚀厚度随热流密度的增加而增加;此外,冷却剂质量流速的增加引起包壳壁温减小,最终导致包壳腐蚀厚度减小。

     

  • 图  1  Cr涂层锆合金包壳水侧腐蚀物理过程

    Figure  1.  Water Side Physical Process of Cr-coated Zirconium Alloy Cladding

    图  2  不同网格数量下流体温度对比

    Figure  2.  Comparison of Fluid Temperature with Different Grid Numbers

    图  3  建模示意图

    Figure  3.  Modeling Diagram

    图  4  流体温度与壁面温度分布

    Figure  4.  Fluid Temperature and Wall Temperature Distribution

    图  5  Cr涂层锆合金腐蚀模型计算对比

    Figure  5.  Calculation and Comparison of Cr-coated Zirconium Alloy Corrosion Model

    图  6  不同热流密度对腐蚀厚度的影响

    Figure  6.  Effect of Different Heat Flux on the Corrosion Thickness

    图  7  不同冷却剂质量流速对腐蚀厚度的影响

    Figure  7.  Effect of Different Coolent Mass Flow Rates on the Corrosion Thickness

    表  1  输入参数汇总

    Table  1.   Summary of Input Parameters

    参数 数值
    入口压力/MPa 15.5
    入口温度/℃ 286.3
    最大热流密度/(MW·m−2) 1.0
    入口质量流速/(kg·m−2·s−1) 3330
    栅距/mm 12.6
    长度/mm 3658
    时间步长/d 1
    总时长/d 500
    下载: 导出CSV

    表  2  Cr涂层锆合金包壳腐蚀实验工况

    Table  2.   Corrosion Experimental Conditions of Cr-coated Zirconium Alloy Cladding

    研究者 材料 热工条件 水化学条件 腐蚀时间/d
    KREJČÍ E110
    (Cr涂层)
    360℃ B:1050 mg/L
    K:15.9 mg/L
    Li:1 mg/L
    225
    Isabel Zr-4
    (Cr涂层)
    18.7 MPa/360℃ Li:10 mg/L
    B:650 mg/L
    60
    Wei Zr-4
    (Cr涂层)
    18.6 MPa/360℃ B:200 mg/L
    Li:1.2 mg/L
    83
    下载: 导出CSV
  • [1] 段振刚,陈平,周毅,等. 耐事故燃料用Cr涂层锆合金包壳研究进展[J]. 核技术,2022, 45(3): 030001. doi: 10.11889/j.0253-3219.2022.hjs.45.030001
    [2] 杨健乔,恽迪,刘俊凯. 铬涂层锆合金耐事故燃料包壳材料事故工况行为研究进展[J]. 材料导报,2022, 36(1): 20080283. doi: 10.11896/cldb.20080283
    [3] BISCHOFF J, VAUGLIN C, DELAFOY C, et al. Development of Cr-coated zirconium alloy cladding for enhanced accident tolerance[C]. Boise: Topfuel 2016-Light Water Reactor (LWR) Fuel Performance Meeting, 2016.
    [4] BISCHOFF J, DELAFOY C, VAUGLIN C, et al. AREVA NP's enhanced accident-tolerant fuel developments: focus on Cr-coated M5 cladding[J]. Nuclear Engineering and Technology, 2018, 50(2): 223-228. doi: 10.1016/j.net.2017.12.004
    [5] MA H B, ZHANG H L, HU L J, et al. Corrosion behavior of Cr-coated zirconium alloy cladding in LiOH/H3BO3-containing water at 360℃[J]. Corrosion Science, 2023, 222: 111386. doi: 10.1016/j.corsci.2023.111386
    [6] BRACHET J C, IDARRAGA-TRUJILLO I, LE FLEM M, et al. Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J]. Journal of Nuclear Materials, 2019, 517: 268-285. doi: 10.1016/j.jnucmat.2019.02.018
    [7] WEI T G, ZHANG R Q, YANG H Y, et al. Microstructure, corrosion resistance and oxidation behavior of Cr-coatings on Zircaloy-4 prepared by vacuum arc plasma deposition[J]. Corrosion Science, 2019, 158: 108077. doi: 10.1016/j.corsci.2019.06.029
    [8] KREJČÍ J, KABÁTOVÁ J, MANOCH F, et al. Development and testing of multicomponent fuel cladding with enhanced accidental performance[J]. Nuclear Engineering and Technology, 2020, 52(3): 597-609. doi: 10.1016/j.net.2019.08.015
    [9] AIEXANDER VASILIEV. Analytical modelling of ATF chromium-coated Zr-based cladding high temperature oxidation in steam and steam-air atmosphere[C]. Bled: Proceedings of International Conference Nuclear Energy for New Europe, 2021.
    [10] F GARZAROLLI, W JUNG, H SHOENFELD, et al. "Waterside Corrosion of Zircaloy Fuel Rods": EPRI NP-2789[R]. Palo: AG and Combustion engineering, Inc., Electric Power Research Institute, 1982.
    [11] YOUNG D J, COHEN M. Oxidation behavior of chromium between 300° and 600℃[J]. Journal of the Electrochemical Society, 1977, 124(5): 769-774. doi: 10.1149/1.2133404
    [12] WILLIAMS R K, GRAVES R S, MCELROY D L. Thermal conductivity of Cr2O3 in the vicinity of the Neel transition[J]. Journal of the American Ceramic Society, 1984, 67(7): C-151-C-152.
    [13] Idarraga-Trujillo I, Flem M L, Brachet J C, et al. Assessment at CEA of coated nuclear fuel cladding for LWRs with increasing margins in LOCA and beyond LOCA conditions[C]//LWR Fuel Performance Meeting/TopFuel 2013. North Carolina: The American Nuclear Society, 2013.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  15
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 修回日期:  2024-05-25
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回