Experimental Study on Steam Reforming Engineering of Radioactive Waste Oil
-
摘要: 为达到放射性废物最小化、处置废物更安全等目的,本研究选择放射性有机废物蒸汽重整技术,在已研制成功的蒸汽重整工程样机上采用干净机油与模拟废油进行冷态试验。冷态试验主要对工程样机的减容效果进行验证,对尾气进行测量。试验结果表明,工程样机减容倍数大于7,废物处理量为5 kg/h;尾气处理系统处理后的尾气排放满足GB 18484—2020《危险废物焚烧污染控制标准》的一级排放要求。Abstract: In order to achieve the objectives of minimizing radioactive waste and safer disposing of waste, the steam reforming technology for radioactive organic waste was selected in this study, and the cold test was carried out on the successfully developed steam reforming engineering prototype with clean engine oil and simulated waste oil. The cold test mainly verifies the volume reduction effect of the engineering prototype and measures the tail gas. The test results show that the capacity reduction multiple of the engineering prototype is greater than 7, and the waste treatment capacity is 5 kg/h. The tail gas discharged by the tail gas treatment system meets the first-class emission requirements of GB 18484—2020 .
-
Key words:
- Radioactive waste /
- Volume reduction /
- Steam reforming
-
表 1 试验源项特性数据
Table 1. Characteristic Data of Test Source Item
干净机油/模拟废油参数 模拟核素加入量(模拟废油)/(g·L−1) 密度/(g·mL−1) 闪点/℃ 倾点/℃ 40℃运动粘度/(mm2·s−1) 100℃运动粘度/(mm2·s−1) CoO SrCO3 CsCO3 0.882 220 −30 104.0 14.4 2.86 2.86 2.86 表 2 干净机油尾气成分分析结果
Table 2. Analysis Results of Tail Gas Composition of Clean Engine Oil
成分 第一批次试验测量值/% 第二批次试验测量值/% CH4 30.85 32.45 C2H6 0.77 0.55 C2H4 11.49 7.04 i−C5H12 0.07 0.06 i−C4H10 0.01 0.01 C3H4 0.10 0.04 C6H6 2.45 2.15 甲苯 0.09 0.04 苯乙烯 0.08 0.03 H2 32.13 33.58 CO2 6.99 8.05 表 3 模拟废油尾气成分分析结果
Table 3. Analysis Results of Tail Gas Composition of Simulated Waste Oil
成分 含Co模拟废油
测量值/%含Cs模拟废油
测量值/%含Sr模拟废油
测量值/%CH4 30.78 28.89 21.47 C2H6 1.20 1.10 0.60 C2H4 17.60 13.20 14.01 i−C5H12 0.60 0.10 0.23 i−C4H10 0.01 0 0.01 C3H4 0.33 0.15 0.20 C6H6 0.10 0.05 0.06 甲苯 0 0.01 0.01 苯乙烯 0 0 0 H2 31.20 36.40 38.90 CO2 5.70 7.00 11.20 表 4 烟气污染物浓度限值对比表
Table 4. Comparison of Flue Gas Pollutant Concentration Limits
成分名称 模拟机油中测量值/(mg·m−3) 污染物限值/(mg·m−3) 含Co模拟机油 含Cs模拟机油 含Sr模拟机油 GB 18484-2020 SO2 0 3.5 0.7 80 CO 24.2 69.8 48.8 250 NOx 29.3 9.3 30.2 80 表 5 蒸汽重整后固体产物模拟核素质量分析
Table 5. Simulated Nuclide Mass Analysis of Solid Products after Steam Reforming
批次 床料模拟
核素质量/g粉灰模拟
核素质量/g沉积物模拟(一级)
核素质量/g沉积物模拟(二级)
核素质量/g一级模拟
净化系数二级模拟
净化系数含Co 58.3 27.2 0.08 0.0048 1133 15808 含Cs 17.9 34.1 1.37 0.004 70 16283 含Sr 22.58 6.8 0.02 0.005 3426 5473 Co 59.2 7.7 0.03 0.0098 2380 7746 Cs 19.7 6.09 1.45 0.0029 65 2582 Sr 19.7 10.22 0.06 0.013 1299 2501 -
[1] 张禹,阮佳晟,郑博文,等. 蒸汽重整反应器调研与分析[J]. 辐射防护通讯,2019, 39(4): 39-48. doi: 10.3969/j.issn.1004-6356.2019.04.008 [2] 顾文露,林力,梁毅,等. 放射性废油蒸汽重整尾气分析方法研究[J]. 同位素,2023, 36(1): 15-19. doi: 10.7538/tws.2021.youxian.069 [3] 方祥洪,马若霞,杨彬,等. 放射性废树脂处理方法研究[J]. 广州化工,2015, 43(3): 6-7. doi: 10.3969/j.issn.1001-9677.2015.03.003 [4] HUANG Y J, WANG H P, LIU S H, et al. Pyrolysis kinetics of spent low-level radioactive resin[J]. Nuclear Technology, 2002, 138(2): 206-210. doi: 10.13182/NT02-A3288 [5] 林力,马兴均,陈先林,等. 放射性废物蒸汽重整处理及矿化技术发展现状及展望[J]. 科技创新导报,2015, 12(18): 6-10. doi: 10.3969/j.issn.1674-098X.2015.18.004