高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双面沟槽型6LiF/α-Al2O3:C光释光中子探测器研制与性能研究

樊海军 崔辉 王善强 王尊刚 周红召 陈文卓 唐开勇

樊海军, 崔辉, 王善强, 王尊刚, 周红召, 陈文卓, 唐开勇. 双面沟槽型6LiF/α-Al2O3:C光释光中子探测器研制与性能研究[J]. 核动力工程, 2024, 45(S1): 215-220. doi: 10.13832/j.jnpe.2024.S1.0215
引用本文: 樊海军, 崔辉, 王善强, 王尊刚, 周红召, 陈文卓, 唐开勇. 双面沟槽型6LiF/α-Al2O3:C光释光中子探测器研制与性能研究[J]. 核动力工程, 2024, 45(S1): 215-220. doi: 10.13832/j.jnpe.2024.S1.0215
Fan Haijun, Cui Hui, Wang Shanqiang, Wang Zungang, Zhou Hongzhao, Chen Wenzhuo, Tang Kaiyong. Dual-sided Trench Shaped Neutron Detector Using 6LiF/α-Al2O3:C Based on Optically Stimulated Luminescence[J]. Nuclear Power Engineering, 2024, 45(S1): 215-220. doi: 10.13832/j.jnpe.2024.S1.0215
Citation: Fan Haijun, Cui Hui, Wang Shanqiang, Wang Zungang, Zhou Hongzhao, Chen Wenzhuo, Tang Kaiyong. Dual-sided Trench Shaped Neutron Detector Using 6LiF/α-Al2O3:C Based on Optically Stimulated Luminescence[J]. Nuclear Power Engineering, 2024, 45(S1): 215-220. doi: 10.13832/j.jnpe.2024.S1.0215

双面沟槽型6LiF/α-Al2O3:C光释光中子探测器研制与性能研究

doi: 10.13832/j.jnpe.2024.S1.0215
详细信息
    作者简介:

    樊海军(1986—),男,博士研究生,现从事核辐射探测器及测量方法研究工作,E-mail: fanhaijun2020@163.com

    通讯作者:

    王善强,E-mail: wsq_tj1000@163.com

  • 中图分类号: TL816

Dual-sided Trench Shaped Neutron Detector Using 6LiF/α-Al2O3:C Based on Optically Stimulated Luminescence

  • 摘要: 中子个人剂量监测对核电厂、核动力装置、研究堆和高能加速器等核设施工作人员具有重要意义。光释光技术具有读出速度快和多次重复读取等优点,是中子个人剂量监测的重要发展方向。本文设计了一种双面沟槽型6LiF/α-Al2O3:C光释光中子探测器(DS-TSOSLND),采用蒙特卡罗程序Geant4计算分析了不同沟槽宽度、深度和沟槽比对探测器性能的影响规律,探索其中子探测机理。基于Geant4模拟计算结果,结合目前α-Al2O3:C晶体微结构加工工艺条件,成功制备了DS-TSOSLND。137Cs源和重水慢化252Cf中子源测试结果表明,新研制的DS-TSOSLND中子探测阈为10.3 μSv,0.05~20 mSv内其中子剂量响应呈线性关系,在中子个人剂量监测领域具有广阔的应用前景。

     

  • 图  1  基于6LiF/α-Al2O3:C的光释光中子探测器结构示意图

    Wcell—沟槽单元宽度;T—沟槽宽度;H—沟槽深度;①、④、⑤、⑥—α或3H到达α-Al2O3:C衬底;②—α和3H不能到达α-Al2O3:C衬底;③—α和3H同时到达α-Al2O3:C衬底

    Figure  1.  Structural Schematic Diagram of OSL Neutron Detector Using 6LiF/α-Al2O3:C

    图  2  单位入射中子在α-Al2O3:C衬底中沉积能量变化曲线

    Figure  2.  Curves of Energy Deposited Per Incident Neutron in α-Al2O3:C

    图  3  不同沟槽比和沟槽单元宽度条件下入射中子在α-Al2O3:C衬底中沉积能量变化曲线

    Figure  3.  Curves of Energy Deposited for Incident Neutron in α-Al2O3:C under Different Trench Ratio and Unit Cell Width

    图  4  α-Al2O3:C单晶片和DS-TSOSLND的光释光曲线

    Figure  4.  OSL Curves of α-Al2O3:C Single Crystal and DS-TSOSLND

    图  5  中子探测阈随积分时间变化曲线

    Figure  5.  Curve of Neutron Detection Threshold with Integration Time

    图  6  DS-TSOSLND探测器中子剂量响应曲线

    Figure  6.  DS-TSOSLND Neutron Response as a Function of the Personal Dose Equivalent

    表  1  Geant4模拟计算参数

    Table  1.   Parameters for Geant4 Simulation

    参数 数值
    α-Al2O3:C衬底厚度/μm 500
    H/μm 10~200
    T/μm 10~50
    沟槽比(T/Wcell 0.1~0.9
    中子能量/eV 0.025
    下载: 导出CSV
  • [1] YIM M S, OCKEN H. Radiation dose management in nuclear power plants[J]. Progress in Nuclear Energy, 2001, 39(1): 31-51. doi: 10.1016/S0149-1970(01)00002-6
    [2] 程贺,张玮,王芳卫,等. 中国散裂中子源的多学科应用[J]. 物理,2019, 48(11): 701-707. doi: 10.7693/wl20191101
    [3] 薛玉雄,马亚莉,杨生胜,等. 载人航天器舱内辐射剂量监测技术综述[J]. 航天器环境工程,2010, 27(2): 210-214. doi: 10.3969/j.issn.1673-1379.2010.02.018
    [4] SINGH A K, RAWAT N S, DHABEKAR B, et al. Characterization of indigenous OSL phosphors LiCaAlF6: Eu, Y and α-Al2O3: C for space dosimetry[J]. Radiation Physics and Chemistry, 2023, 211: 111041. doi: 10.1016/j.radphyschem.2023.111041
    [5] TAKADA M, ABE Y, NAKAMURA S, et al. Spectrometer design of low energy neutrons for boron neutron capture therapy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1020: 165848. doi: 10.1016/j.nima.2021.165848
    [6] D'ERRICO F, BOS A J J. Passive detectors for neutron personal dosimetry: state of the art[J]. Radiation Protection Dosimetry, 2004, 110(1-4): 195-200. doi: 10.1093/rpd/nch129
    [7] GÓMEZ-ROS J M, BEDOGNI R, DOMINGO C. Personal neutron dosimetry: state-of-the-art and new technologies[J]. Radiation Measurements, 2023, 161: 106908. doi: 10.1016/j.radmeas.2023.106908
    [8] KLEMIC G A, AZZIZ N, MARINO S A. The neutron response of AL2O3: C, 7LiF: Mg, Cu, P and 7LiF: Mg, Ti TLDs[J]. Radiation Protection Dosimetry, 1996, 65(1-4): 221-226. doi: 10.1093/oxfordjournals.rpd.a031627
    [9] YUKIHARA E G. A review on the OSL of BeO in light of recent discoveries: the missing piece of the puzzle?[J]. Radiation Measurements, 2020, 134: 106291. doi: 10.1016/j.radmeas.2020.106291
    [10] YUKIHARA E G, BOS A J J, BILSKI P, et al. The quest for new thermoluminescence and optically stimulated luminescence materials: needs, strategies and pitfalls[J]. Radiation Measurements, 2022, 158: 106846. doi: 10.1016/j.radmeas.2022.106846
    [11] KNOLL G F. Radiation detection and measurement[M]. Hoboken: John Wiley & Sons, 2010: 519-538.
    [12] PIETROPAOLO A, ANGELONE M, BEDOGNI R, et al. Neutron detection techniques from μeV to GeV[J]. Physics Reports, 2020, 875: 1-65. doi: 10.1016/j.physrep.2020.06.003
    [13] KULIG D, GIESZCZYK W, MARCZEWSKA B, et al. Comparative studies on OSL properties of LiMgPO4: Tb, B powders and crystals[J]. Radiation Measurements, 2017, 106: 94-99. doi: 10.1016/j.radmeas.2017.04.004
    [14] PATRA G D, SINGH S G, TIWARI B, et al. Optically stimulated luminescence in Ag doped Li2B4O7 single crystal and its sensitivity to neutron detection and dosimetry in OSL mode[J]. Radiation Measurements, 2016, 88: 14-19. doi: 10.1016/j.radmeas.2016.03.002
    [15] YUKIHARA E G, DOULL B A, GUSTAFSON T, et al. Optically stimulated luminescence of MgB4O7: Ce, Li for gamma and neutron dosimetry[J]. Journal of Luminescence, 2017, 183: 525-532. doi: 10.1016/j.jlumin.2016.12.001
    [16] YUKIHARA E G, MITTANI J C, VANHAVERE F, et al. Development of new optically stimulated luminescence (OSL) neutron dosimeters[J]. Radiation Measurements, 2008, 43(2-6): 309-314. doi: 10.1016/j.radmeas.2007.10.005
    [17] PASSMORE C, KIRR M. Neutron response characterisation of an OSL neutron dosemeter[J]. Radiation Protection Dosimetry, 2011, 144(1-4): 155-160. doi: 10.1093/rpd/ncq300
    [18] HONG D G, KIM M J, PARK S H, et al. Neutron detection efficiency of Al2O3: C coated with various thicknesses of Li using OSL[J]. Radiation Measurements, 2011, 46(12): 1701-1703. doi: 10.1016/j.radmeas.2011.07.039
    [19] AGOSTINELLI S, ALLISON J, AMAKO K, et al. GEANT4 – A simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303. doi: 10.1016/S0168-9002(03)01368-8
    [20] ALLISON J, AMAKO K, APOSTOLAKIS J, et al. Recent developments in GEANT4[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 835: 186-225. doi: 10.1016/j.nima.2016.06.125
    [21] SUN T, TANG K, CUI H, et al. Optically stimulated luminescence of α-Al2O3: C by the vertical gradient freezing (VGF) method[J]. Journal of Luminescence, 2019, 205: 568-571. doi: 10.1016/j.jlumin.2018.10.014
    [22] RAWAT N S, DHABEKAR B, KULKARNI M S, et al. Optimization of CW-OSL parameters for improved dose detection threshold in Al2O3: C [J]. Radiation Measurements, 2014, 71: 212-216. doi: 10.1016/j.radmeas.2014.02.013
    [23] 中华人民共和国国家卫生健康委员会. 职业性外照射个人监测规范: GBZ 128—2019[S]. 北京: 中国标准出版社,2019: 8.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  17
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 修回日期:  2024-01-16
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回