Numerical Simulation and Optimization Analysis of Labyrinth Screw Pump in Nuclear Power Reactor Coolant Pump
-
摘要: 为了改善某核电厂推力轴承表面由于空化导致的磨损现象,延长核主泵的使用寿命,考虑在核主泵中推力轴承润滑回路增设二级迷宫螺旋泵。通过加设增压装置,提高回路压力,减少空化现象。本文建立该核主泵一级迷宫螺旋泵等比例三维模型,利用FLUENT流体仿真软件开展数值计算,对流场的压力、速度及温度分布进行分析,将计算结果与某核电厂实际运行结果进行比较,验证建立模型和数值计算方法的准确性。设计二级迷宫螺旋泵并进行数值模拟,研究发现:增设二级迷宫螺旋泵后,润滑回路进出口压升为3.30×105 Pa,扬程提升33.67%,进出口截面温升为3 K。研究结果对迷宫螺旋泵在工程实际中的设计与使用具有一定的参考价值。Abstract: In order to improve the wear phenomenon caused by cavitation on the surface of the thrust bearing in a certain nuclear power plant and extend the service life of reactor coolant pump, it is considered to add a second-stage labyrinth screw pump to the lubrication circuit of the thrust bearing in the reactor coolant pump. By installing a pressure boosting device, the circuit pressure is increased and cavitation is reduced. In this paper, the three-dimensional model of the first-stage labyrinth screw pump in the reactor coolant pump is established, and the numerical calculation is carried out by using FLUENT software to analyze the pressure, velocity and temperature distribution of the flow field. The calculation results are compared with the actual operation results of the nuclear power plant to verify the accuracy of the model and the numerical calculation method. A second-stage labyrinth screw pump is designed and numerically simulated. It is found that after adding the second-stage labyrinth screw pump, the pressure rise at the inlet and outlet of the lubrication circuit is 3.30×105 Pa, the head is increased by 33.67%, and the temperature rise at the inlet and outlet section is 3 K. The research results have a certain reference value for the design and application of labyrinth screw pump in engineering practice.
-
Key words:
- Labyrinth screw pump /
- Numerical simulation /
- Interior flow field /
- FLUENT
-
表 1 一级和二级迷宫螺旋泵结构参数
Table 1. Structural Parameters of First and Second Stage Labyrinth Screw Pump
参数 一级迷宫螺旋泵 二级迷宫螺旋泵 转子螺纹齿顶圆半径/mm 205.00 432.24 转子螺纹齿根圆半径/mm 195.50 424.00 转子螺纹节圆半径/mm 200.25 428.12 定子螺纹齿顶圆半径/mm 206.00 434.24 定子螺纹齿根圆半径/mm 215.50 — 定子螺纹节圆半径/mm 210.75 — 螺纹槽深/mm 9.50 8.24 导程/mm 450.00 857.00 螺距/mm 17.31 14.78 螺旋升角 30.27° 17.79° 螺纹头数/mm 58 72 定子转子间隙/mm 1.00 2.00 螺旋体长度/mm 190.00 189.00 螺旋槽有效长度/mm 602.45 616.85 -
[1] 陈锦裕,杨全超,文学,等. 1000MW级反应堆冷却剂泵轴向力分析计算[J]. 化学工程与装备,2018(8): 245-248. [2] 孟晋,王祥,安宁,等. WWER1000机组核主泵水润滑轴承工作原理及问题分析[J]. 机械工程师,2017(6): 131-133. [3] 曾小康,周慧辉,熊万玉. 田湾核电站主泵轴承汽蚀磨损CFD研究[J]. 核动力工程,2016, 37(2): 143-146. [4] 胡冬清. 主泵石墨轴瓦磨损原因分析及处理方案[C]//中国电工技术学会大电机专业委员会2014年学术年会论文集. 哈尔滨: 中国电工技术学会,2014: 311-314. [5] 马润梅. 迷宫螺旋泵泵送机理及性能的CFD数值模拟和试验研究[D]. 北京: 北京化工大学,2009. [6] GOLUBIEV A I. Studies on seals for rotating shafts of high-pressure pumps[J]. Wear, 1965, 8(4): 270-288. doi: 10.1016/0043-1648(65)90003-7 [7] 马润梅,王奎升,黎镜中. 基于CFD数值模拟和泵性能实验的迷宫螺旋泵泵送机制研究[J]. 润滑与密封,2008, 33(2): 75-79. [8] 史泉,赵长喜,屈林,等. 微型迷宫螺旋泵三角形牙型圆角对性能的影响研究[J]. 制造业自动化,2016, 38(6): 36-39. [9] RONG X, ZHU H W, HU B. Performance research and structure optimization of labyrinth screw pump[J]. Micromachines, 2021, 12(7): 790. doi: 10.3390/mi12070790