Global Optimization Analysis of Nuclear Power Plant Parameters Based on Modelica
-
摘要: 为了解决核动力装置在传统设计优化程序开发时存在的需事先确定配置模式所导致的低效问题,研究基于Modelica的核动力装置参数全局优化分析的实现途径,开展了压水堆核动力装置一回路系统及设备的标准化模型构建,建立了从底层评估模型到顶层系统模型的层次化构架,实现了一回路系统及设备自由组态和可视化设计建模。通过耦合敏感性分析工具和多目标优化算法,实现了一回路系统典型设计参数的敏感性分析和多目标优化研究。以重量、体积、自然循环能力、安全性(即最小偏离泡核沸腾比,MDNBR)和装置热效率为优化目标,对所研究核动力装置开展了多目标优化案例研究。研究结果证明了基于Modelica的核动力装置全局参数优化工具可以实现核动力装置的全局多目标优化设计,该工具使用的层次化建模方法规范、高效且灵活,是解决基于模型的核动力装置系统总体设计优化问题的有效技术途径。Abstract: To solve the problem of low efficiency caused by the need to determine the configuration mode in advance when developing design optimization codes for nuclear power plant, this study explores the implementation method of the global optimization analysis of nuclear power plant parameters based on Modelica. The standardized model construction of the primary circuit system and equipment of the nuclear power plant is carried out, the hierarchical framework from the bottom evaluation model to the top system model is established, and the free configuration and visual design modeling of the primary circuit system and equipment are realized. With coupling sensitivity analysis tool and multi-objective optimization algorithm, sensitivity analysis and multi-objective optimization of typical design parameters of the primary circuit system are realized. Taking weight, volume, natural circulation capacity, safety (the minimum departure from nucleate boiling ratio, MDNBR), and thermal efficiency of the plant as optimization objectives, a multi-objective optimization case study was carried out for the nuclear power plant studied. The research results show that the global parameter optimization tool of nuclear power plant based on Modelica can realize the global multi-objective optimization design of nuclear power plant. The hierarchical modeling method used by the tool is standardized, efficient, and flexible, and is a technical approach suitable for solving the overall design optimization problem of a model-based nuclear power plant system.
-
Key words:
- Modelica /
- Free configuration /
- Visual modeling /
- Sensitivity analysis /
- Multi-objective optimization
-
表 1 归一化设计方案
Table 1. Normalized Design Scheme
参数名称 母型值 特征方案1 特征方案2 特征方案3 优化
变量一回路压力 1.0 0.9978 1.0735 1.0921 反应堆进口温度 1.0 1.09219 1.09766 1.09846 反应堆出口温度 1.0 1.08661 1.08551 1.08977 二次侧压力 1.0 0.9179 1.0586 1.1660 燃料元件外径 1.0 0.9765 0.9786 1.0827 SG传热管节径比 1.0 0.9862 0.9908 1.0284 SG传热管外径 1.0 0.8647 0.9622 1.1545 稳压器内径 1.0 0.9861 1.0721 1.2500 优化
目标重量 1.0 0.8557 1.3704 1.2686 体积 1.0 0.8510 1.3129 1.1851 自然循环能力 1.0 0.6923 1.3077 1.1538 MDNBR 1.0 1.0142 2.0053 0.7456 装置热效率 1.0 0.9899 1.0130 1.0284 -
[1] 秦慧敏,阎昌琪,王建军,等. 立式自然循环蒸汽发生器的重量优化设计[J]. 原子能科学技术,2011, 45(1): 66-72. [2] 贺士晶,阎昌琪,王建军,等. 稳压器容积的优化设计[J]. 原子能科学技术,2010, 44(3): 320-324. [3] 李贵敬,阎昌琪,王建军,等. 主循环泵重量和体积的优化设计[J]. 原子能科学技术,2011, 45(9): 1070-1074. [4] 李贵敬. 核动力设备及系统的多目标参数优化[D]. 哈尔滨: 哈尔滨工程大学,2015. [5] ZHONG D W, MENG J A, QIN P, et al. Effect of cooling water flow path on the flow and heat transfer in a 660 MW power plant condenser[J]. Journal of Thermal Science, 2019, 28(2): 262-270. doi: 10.1007/s11630-018-1063-7 [6] OLIVEIRA M C, ITEN M. Modelling of industrial water circuits with a customised Modelica library[J]. Applied Thermal Engineering, 2020, 169: 114840. doi: 10.1016/j.applthermaleng.2019.114840 [7] CHRISTOPHER S, VALERIA B, GERNOT E, et al. An understandable, extensible, and reusable implementation of the hodgkin-huxley equations using modelica[J]. Frontiers in physiology, 2020: 11583203-583203. [8] 曾国庆,陈国兵,李军,等. 基于Modelica的船舶凝汽器动态特性分析[J]. 舰船科学技术,2022, 44(23): 104-108. [9] 刘忠诚,张旭阳,张鲲羽. 基于Modelica/Mworks的船用汽轮机主汽门性能仿真验证[J]. 能源工程,2023, 43(1): 6-10,17. doi: 10.3969/j.issn.1004-3950.2023.1.nygc202301002 [10] 杨帆,张士杰,魏胜利,等. 基于Modelica的回热型微型燃气轮机动态模拟[J]. 热能动力工程,2022, 37(11): 51-60. [11] 梁洋洋,张慧敏,王力,等. Modelica仿真技术在气冷式微型反应堆中的应用[J]. 核动力工程,2022, 43(2): 152-159.