Development and Application of Autonomous Computational Fluid Dynamics Code WINGS-CFD for Nuclear Reactors
-
摘要: 为满足反应堆高精度流动传热数值仿真需求,提出了一种基于面向对象的、分层架构设计的、高可扩展的自主化反应堆计算流体动力学(CFD)软件WINGS-CFD 。从理论模型、数值离散方法、软件架构等方面介绍WINGS-CFD软件的总体设计,并采用WINGS-CFD软件对反应堆典型场景流动传热工况进行了数值计算。结果表明,WINGS-CFD计算结果的精度与商用CFD软件的结果相当;WINGS-CFD软件具备优秀的并行性能,可支持亿级网格大规模数值仿真以及中子输运与流动传热耦合仿真,为反应堆系统的精细化多物理场分析提供了自主化数值技术手段。
-
关键词:
- 反应堆 /
- 计算流体动力学(CFD) /
- 流动传热 /
- 分层架构
Abstract: To meet the requirements of high-precision numerical simulation of reactor flow and heat transfer, this article introduces WINGS-CFD (Workbench of Intelligent Nuclear reactor desiGn and Simulation-Computational Fluid Dynamics), an autonomous Computational Fluid Dynamics (CFD) code for nuclear reactors developed by Nuclear Power Institute of China, which is designed based on the object-oriented and hierarchical architecture principles with a high degree of extension. This article comprehensively outlines the overall design concepts of WINGS-CFD, covering aspects such as theoretical models, numerical discretization methods, and code architecture. Numerical calculations for typical reactor scenarios involving flow and heat transfer conditions are conducted using WINGS-CFD. The results show that the accuracy of WINGS-CFD calculation results is equivalent to that of commercial CFD code. WINGS-CFD has excellent parallel performance, which can support large-scale numerical simulation of billions of grids and coupled simulation of neutron transport and flow and heat transfer, and provides an autonomous numerical technique for refined multi-physical field analysis of reactor system. -
表 1 CFD计算采用的流体物性
Table 1. Fluid Properties Used in CFD Calculations
参数名 参数值 密度/(kg·m−3) 998.2 粘度/[kg·(m·s)−1] 0.001003 比热容/[J·(kg·K)−1] 4182 导热系数/[W·(m·K)−1] 0.6 表 2 弱可扩展性测试结果
Table 2. Weak Scalability Testing Results
网格
总数/万并行度 并行效率/% Fluent WINGS-CFD 40 32 100 100 80 64 91.33 93.04 160 128 24.08 85.36 -
[1] 陶文铨. 数值传热学[M]. 第二版. 西安: 西安交通大学出版社,2001: 14-21. [2] 张兆顺,崔桂香,许春晓. 湍流理论与模拟[M]. 北京: 清华大学出版社,2005: 21-36. [3] 魏宗岚,杜思佳,王啸宇,等. 基于CFD的燃料组件上管座阻力特性数值模拟研究[J]. 核动力工程,2017, 38(S2): 29-33. [4] 赵伟,李燕,杜思佳,等. 华龙一号反应堆下腔室结构优化设计[J]. 核动力工程,2019, 40(2): 112-116. [5] ANSYS. CFX-solver manager user's guide[Z]. 2017. [6] CD-ADAPCO. USER GUIDE: STAR-CCM+ Version 15. 04[Z]. 2020. [7] POPE S B. Turbulent flows[M]. New York: Cambridge University Press, 2000: 182-189. [8] FERZIGER J H, PERIC M. Computational methods for fluid dynamics[M]. 2nd ed. Cham: Springer, 2001: 71-82. [9] BRANDT A. Multi-level adaptive solutions to boundary-value problems[J]. Mathematics of Computation, 1977, 31(138): 333-390. doi: 10.1090/S0025-5718-1977-0431719-X [10] SMAGORINSKY J. General circulation experiments with the primitive equations: I. The basic experiment[J]. Monthly Weather Review, 1963, 91(3): 99-164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 [11] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183-200. doi: 10.1023/A:1009995426001 [12] LAUNDER B, SHARMA B I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc[J]. Letters in Heat and Mass Transfer, 1974, 1(2): 131-137. doi: 10.1016/0094-4548(74)90150-7 [13] MENTER F R, KUNTZ M, LANGTRY R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149