[1] |
高利军,陈炳德,姜胜耀,等. 弥散型燃料板的辐照起泡机理分析[J]. 原子能科学技术,2012, 46(S2): 819-825.
|
[2] |
龙冲生,赵毅,高雯,等. 基于断裂强度的陶瓷燃料颗粒开裂模型[J]. 核动力工程,2014, 35(1): 92-96,105.
|
[3] |
赵毅,龙冲生,王晓敏. 弥散燃料颗粒裂纹起源的有限元模拟分析[J]. 原子能科学技术,2015, 49(2): 311-315.
|
[4] |
陈洪生,龙冲生,肖红星,等. 裂变气体气泡尺寸对弥散燃料颗粒内部特征的影响规律[J]. 核动力工程,2018, 39(2): 27-31.
|
[5] |
陈洪生,龙冲生,肖红星,等. 基于弥散燃料颗粒开裂的裂变气体释放模型[J]. 核动力工程,2019, 40(5): 85-91.
|
[6] |
陈洪生,龙冲生,肖红星. 基于弥散燃料颗粒开裂的金属基体裂纹特征模型[J]. 原子能科学技术,2020, 54(2): 334-339.
|
[7] |
严峰,丁淑蓉,李垣明,等. UMo/Zr单片式燃料板起泡行为数值模拟[J]. 原子能科学技术,2018, 52(6): 1063-1069.
|
[8] |
GEELHOOD K J, LUSCHER W G, RAYNAUD P A, et al. FRAPCON-4.0 - a computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup: PNNL-19418, Vol.1 Rev.2[R]. Washington: U. S. Department of Energy, 2015.
|
[9] |
GEELHOOD K J, LUSCHER W G. FRAPTRAN-1.5 - integral assessment: PNNL-19400, Vol. 2, Rev. 1[R]. Richland: Pacific Northwest National Laboratory, 2014.
|
[10] |
DENG Y B, WU Y W, LI Y M, et al. Mechanism study and theoretical simulation on heat split phenomenon in dual-cooled annular fuel element[J]. Annals of Nuclear Energy, 2016, 94: 44-54. doi: 10.1016/j.anucene.2016.02.019
|
[11] |
DENG Y B, WU Y W, ZHANG D L, et al. Thermal-mechanical coupling behavior analysis on metal-matrix dispersed plate-type fuel[J]. Progress in Nuclear Energy, 2017, 95: 8-22. doi: 10.1016/j.pnucene.2016.11.007
|
[12] |
DENG Y B, WU Y W, GONG C, et al. Upgrade of FROBA code and its application in thermal-mechanical analysis of space reactor fuel[J]. Nuclear Engineering and Design, 2018, 332: 297-306. doi: 10.1016/j.nucengdes.2018.03.041
|
[13] |
HALES J D, NOVASCONE S R, SPENCER B W, et al. Verification of the BISON fuel performance code[J]. Annals of Nuclear Energy, 2014, 71: 81-90. doi: 10.1016/j.anucene.2014.03.027
|
[14] |
WILLIAMSON R L, CAPPS N A, LIU W, et al. Multi-dimensional simulation of LWR fuel behavior in the BISON fuel performance code[J]. JOM, 2016, 68(11): 2930-2937. doi: 10.1007/s11837-016-2115-7
|
[15] |
HE Y A, CHEN P, WU Y W, et al. Preliminary evaluation of U3Si2-FeCrAl fuel performance in light water reactors through a multi-physics coupled way[J]. Nuclear Engineering and Design, 2018, 328: 27-35.
|
[16] |
邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能分析程序开发与验证[J]. 原子能科学技术,2021, 55(7): 1296-1303.
|
[17] |
邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能瞬态分析程序开发与验证[J]. 原子能科学技术,2021, 55(8): 1429-1439.
|
[18] |
HE Y A, NIU Y H, XIANG F R, et al. Preliminary development of a multi-physics coupled fuel performance code for annular fuel analysis under normal conditions[J]. Nuclear Engineering and Design, 2022, 393: 111810.
|
[19] |
XIANG F R, HE Y A, NIU Y H, et al. A new method to simulate dispersion plate-type fuel assembly in a multi-physics coupled way[J]. Annals of Nuclear Energy, 2022, 166: 108734.
|
[20] |
XIANG F R, HE Y A, WU Y W, et al. Investigation of plate fuel performance under reactivity initiated accidents with developed multi-dimensional coupled method[J]. Journal of Nuclear Materials, 2023, 583: 154537.
|
[21] |
LIU R, PRUDIL A, ZHOU W Z, et al. Multiphysics coupled modeling of light water reactor fuel performance[J]. Progress in Nuclear Energy, 2016, 91: 38-48. doi: 10.1016/j.pnucene.2016.03.030
|
[22] |
WANG Y Y, GUO Y H, WU Y W, et al. Preliminary analysis on the thermal-mechanical behavior of dispersed plate-type fuel under reactivity insertion accident[J]. Annals of Nuclear Energy, 2021, 163: 108509. doi: 10.1016/j.anucene.2021.108509
|
[23] |
NASIR R, MIRZA N M, MIRZA S M. Sensitivity of reactivity insertion limits with respect to safety parameters in a typical MTR[J]. Annals of Nuclear Energy, 1999, 26(17): 1517-1535. doi: 10.1016/S0306-4549(99)00038-9
|
[24] |
MIRZA A M, KHANAM S, MIRZA N M. Simulation of reactivity transients in current MTRs[J]. Annals of Nuclear Energy, 1998, 25(18): 1465-1484. doi: 10.1016/S0306-4549(98)00020-6
|
[25] |
KHATER H, ABU-EL-MATY T, EL-DIN EL-MORSHDY S. Thermal-hydraulic modeling of reactivity accidents in MTR reactors[J]. Nuclear Technology and Radiation Protection, 2006, 21(2): 21-32. doi: 10.2298/NTRP0602021K
|
[26] |
IAEA. Research reactor core conversion from the use of highly enriched uranium fuels: guidebook: IAEA-TECDOC-233[R]. Vienna: International Atomic Energy Agency, 1980.
|
[27] |
IAEA. Research reactor core conversion guidebook: volume 4: fuels (appendices I-K): IAEA-TECDOC-643[R]. Vienna: International Atomic Energy Agency, 1992.
|
[28] |
LUCUTA P G, MATZKE H J, HASTINGS I J. A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: review and recommendations[J]. Journal of Nuclear Materials, 1996, 232(2-3): 166-180. doi: 10.1016/S0022-3115(96)00404-7
|
[29] |
HARDING J H, MARTIN D G. A recommendation for the thermal conductivity of UO2[J]. Journal of Nuclear Materials, 1989, 166(3): 223-226. doi: 10.1016/0022-3115(89)90218-3
|
[30] |
SIEFKEN L J, CORYELL E W, HARVEGO E A, et al. SCDAP/RELAP5/MOD 3.3 code manual: MATPRO-A library of materials properties for light-water-reactor accident analysis: Technical Report NUREG/CR-6150[R]. Washington: Division of Systems Technology, Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission, 2001.
|
[31] |
ALLISON C M, BERNA G A, CHAMBERS R, et al. SCDAP/RELAP5/MOD 3.1 code manual: MATPRO–A library of materials properties for light-water-reactor accident analysis: NUREG/CR-6150[R]. Washington: Idaho National Engineering Laboratory, 1993.
|
[32] |
MAXWELL J C. A treatise on electricity and magnetism[M]. Oxford: Clarendon Press, 1873: 365.
|
[33] |
姜馨. 弥散型燃料的等效性质及棒状元件的辐照力学行为的研究[D]. 上海: 复旦大学,2009.
|
[34] |
杨烁. 核燃料元件内陶瓷颗粒的开裂行为模拟及PCI失效行为研究[D]. 西安: 西安交通大学,2021.
|
[35] |
JIANG W, SPENCER B W, DOLBOW J E. Ceramic nuclear fuel fracture modeling with the extended finite element method[J]. Engineering Fracture Mechanics, 2020, 223: 106713. doi: 10.1016/j.engfracmech.2019.106713
|
[36] |
伍晓勇,王斐,温榜. UO2弥散型燃料辐照后高温失效时显微分析[J]. 核动力工程,2012, 33(1): 74-77.
|