高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒弥散板状燃料元件开裂起泡模拟技术研究

刘洪权 向烽瑞 巫英伟 贺亚男 章静 苏光辉

刘洪权, 向烽瑞, 巫英伟, 贺亚男, 章静, 苏光辉. 颗粒弥散板状燃料元件开裂起泡模拟技术研究[J]. 核动力工程, 2024, 45(S2): 84-92. doi: 10.13832/j.jnpe.2024.S2.0084
引用本文: 刘洪权, 向烽瑞, 巫英伟, 贺亚男, 章静, 苏光辉. 颗粒弥散板状燃料元件开裂起泡模拟技术研究[J]. 核动力工程, 2024, 45(S2): 84-92. doi: 10.13832/j.jnpe.2024.S2.0084
Liu Hongquan, Xiang Fengrui, Wu Yingwei, He Yanan, Zhang Jing, Su Guanghui. Study on Simulation Technology of Cracking and Blistering of Particle Dispersed Plate Fuel Element[J]. Nuclear Power Engineering, 2024, 45(S2): 84-92. doi: 10.13832/j.jnpe.2024.S2.0084
Citation: Liu Hongquan, Xiang Fengrui, Wu Yingwei, He Yanan, Zhang Jing, Su Guanghui. Study on Simulation Technology of Cracking and Blistering of Particle Dispersed Plate Fuel Element[J]. Nuclear Power Engineering, 2024, 45(S2): 84-92. doi: 10.13832/j.jnpe.2024.S2.0084

颗粒弥散板状燃料元件开裂起泡模拟技术研究

doi: 10.13832/j.jnpe.2024.S2.0084
基金项目: 国家自然科学基金(12205230);中核集团领创科研项目
详细信息
    作者简介:

    刘洪权(1999—),男,博士研究生,现从事核反应堆热工水力与燃料性能分析研究,E-mail: 3035604524@qq.com

    通讯作者:

    巫英伟,E-mail: wyw810@mail.xjtu.edu.cn

  • 中图分类号: TL352.1

Study on Simulation Technology of Cracking and Blistering of Particle Dispersed Plate Fuel Element

  • 摘要: 颗粒弥散板状燃料元件在堆内运行时,可能发生开裂起泡现象,影响燃料及核反应堆的安全性。针对颗粒弥散板状燃料元件进行了开裂起泡现象的数值模拟研究。为了实现从细观燃料颗粒到宏观燃料元件的开裂分析和起泡模拟,首先建立了一套多维度跨尺度耦合的模拟分析策略,使用从细观燃料颗粒尺度到宏观元件尺度的跨尺度耦合方案,实现了从燃料颗粒出发的燃料元件芯体开裂危险区域判定;基于包含了三维燃料元件、一维冷却剂和二维燃料切片的多维度耦合体系,应用扩展有限元方法,实现了燃料元件的二维开裂起泡模拟;为了准确判断起泡的发生,建立了一套裂变气体内压模型,与二维扩展有限元相结合,最终实现了热冲击工况下的宏观燃料元件的裂纹扩展模拟,并预测当燃耗为120 MW·d·kg−1(U)时,起泡发生的温度为790 K左右。

     

  • 图  1  细观颗粒-宏观元件跨尺度耦合开裂判定方法

    Figure  1.  Multi-scale Coupling from Fine-scale Particle to Macro-scale Element for Cracking Determination Method

    图  2  三维燃料元件-一维冷却剂-二维燃料切片多维度耦合

    Figure  2.  Multi-Dimensional Coupling of 3D Fuel Element-1D Coolant-2D Fuel Slice

    图  3  二维燃料切片裂纹模拟研究技术路线

    Figure  3.  2D Fuel Slice Cracking Simulation Method

    图  4  扩展有限元法的网格处理

    Figure  4.  Extended Finite Element Method for Mesh Cutting

    图  5  裂纹内裂变气体压力计算方法

    R—阿伏伽德罗常数

    Figure  5.  Calculation of Fission Gas Pressure in Cracks

    图  6  燃料元件起泡过程裂变气体内压变化

    Figure  6.  Variation of Fission Gas Internal Pressure during Fuel Element Blistering

    图  7  含随机分布气孔的燃料颗粒几何模型及网格

    Figure  7.  Geometric Model and Meshing of Fuel Particle with Randomly Distributed Pores

    图  8  含随机分布气孔的燃料颗粒vonMises应力分布

    Figure  8.  VonMises Stress Distribution in Fuel Particle with Randomly Distributed Pores

    图  9  颗粒vonMises应力峰值-温度-燃耗关系

    Figure  9.  VonMises Peak Stress-Temperature-Burnup Relationship for Fuel Particles

    图  10  基于宏观条件的燃料颗粒开裂判定

    Figure  10.  Determination of Fuel Particle Cracking Based on Macroscopic Conditions

    图  11  燃料元件内部颗粒开裂危险区域演化

    Figure  11.  Evolution of Particle Cracking Risk Region in Fuel Element

    图  12  燃料元件多维度耦合开裂起泡模拟

    Figure  12.  Simulation of Fuel Element Cracking and Blistering with Multi-dimensional Coupling

    图  13  热冲击瞬态温度变化过程

    Figure  13.  Temperature Change Process in Thermal Shock Transient

    图  14  燃料元件热冲击瞬态工况局部起泡模拟结果

    Figure  14.  Simulation Results of Localized Blistering of Fuel Elements in Thermal Shock Transient

    图  15  燃料起泡过程裂变气体内压与热冲击温度关系

    Figure  15.  Curve of Fission Gas Internal Pressure Versus Temperature for Fuel Blistering in Thermal Shock Transient

    图  16  燃料元件起泡高度与热冲击温度关系曲线

    Figure  16.  Curve of Fuel Blistering Height Versus Temperature in Thermal Shock Transient

    图  17  燃料起泡直径与热冲击温度关系曲线

    Figure  17.  Curve of Fuel Blistering Diameter Versus Temperature in Thermal Shock Transient

    表  1  燃料元件组成相材料物性模型

    Table  1.   Fuel Element Material Property Models

    材料 物性 模型
    UO2 热传导 Lucuta模型[28]
    弹性力学 Martin模型[29]
    热膨胀 Martin模型
    辐照肿胀 MATPRO模型[30]
    密实化 ESCORE模型
    Zr-4合金热传导MATPRO模型
    弹性力学 MATPRO模型[31]
    下载: 导出CSV
  • [1] 高利军,陈炳德,姜胜耀,等. 弥散型燃料板的辐照起泡机理分析[J]. 原子能科学技术,2012, 46(S2): 819-825.
    [2] 龙冲生,赵毅,高雯,等. 基于断裂强度的陶瓷燃料颗粒开裂模型[J]. 核动力工程,2014, 35(1): 92-96,105.
    [3] 赵毅,龙冲生,王晓敏. 弥散燃料颗粒裂纹起源的有限元模拟分析[J]. 原子能科学技术,2015, 49(2): 311-315.
    [4] 陈洪生,龙冲生,肖红星,等. 裂变气体气泡尺寸对弥散燃料颗粒内部特征的影响规律[J]. 核动力工程,2018, 39(2): 27-31.
    [5] 陈洪生,龙冲生,肖红星,等. 基于弥散燃料颗粒开裂的裂变气体释放模型[J]. 核动力工程,2019, 40(5): 85-91.
    [6] 陈洪生,龙冲生,肖红星. 基于弥散燃料颗粒开裂的金属基体裂纹特征模型[J]. 原子能科学技术,2020, 54(2): 334-339.
    [7] 严峰,丁淑蓉,李垣明,等. UMo/Zr单片式燃料板起泡行为数值模拟[J]. 原子能科学技术,2018, 52(6): 1063-1069.
    [8] GEELHOOD K J, LUSCHER W G, RAYNAUD P A, et al. FRAPCON-4.0 - a computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup: PNNL-19418, Vol.1 Rev.2[R]. Washington: U. S. Department of Energy, 2015.
    [9] GEELHOOD K J, LUSCHER W G. FRAPTRAN-1.5 - integral assessment: PNNL-19400, Vol. 2, Rev. 1[R]. Richland: Pacific Northwest National Laboratory, 2014.
    [10] DENG Y B, WU Y W, LI Y M, et al. Mechanism study and theoretical simulation on heat split phenomenon in dual-cooled annular fuel element[J]. Annals of Nuclear Energy, 2016, 94: 44-54. doi: 10.1016/j.anucene.2016.02.019
    [11] DENG Y B, WU Y W, ZHANG D L, et al. Thermal-mechanical coupling behavior analysis on metal-matrix dispersed plate-type fuel[J]. Progress in Nuclear Energy, 2017, 95: 8-22. doi: 10.1016/j.pnucene.2016.11.007
    [12] DENG Y B, WU Y W, GONG C, et al. Upgrade of FROBA code and its application in thermal-mechanical analysis of space reactor fuel[J]. Nuclear Engineering and Design, 2018, 332: 297-306. doi: 10.1016/j.nucengdes.2018.03.041
    [13] HALES J D, NOVASCONE S R, SPENCER B W, et al. Verification of the BISON fuel performance code[J]. Annals of Nuclear Energy, 2014, 71: 81-90. doi: 10.1016/j.anucene.2014.03.027
    [14] WILLIAMSON R L, CAPPS N A, LIU W, et al. Multi-dimensional simulation of LWR fuel behavior in the BISON fuel performance code[J]. JOM, 2016, 68(11): 2930-2937. doi: 10.1007/s11837-016-2115-7
    [15] HE Y A, CHEN P, WU Y W, et al. Preliminary evaluation of U3Si2-FeCrAl fuel performance in light water reactors through a multi-physics coupled way[J]. Nuclear Engineering and Design, 2018, 328: 27-35.
    [16] 邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能分析程序开发与验证[J]. 原子能科学技术,2021, 55(7): 1296-1303.
    [17] 邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能瞬态分析程序开发与验证[J]. 原子能科学技术,2021, 55(8): 1429-1439.
    [18] HE Y A, NIU Y H, XIANG F R, et al. Preliminary development of a multi-physics coupled fuel performance code for annular fuel analysis under normal conditions[J]. Nuclear Engineering and Design, 2022, 393: 111810.
    [19] XIANG F R, HE Y A, NIU Y H, et al. A new method to simulate dispersion plate-type fuel assembly in a multi-physics coupled way[J]. Annals of Nuclear Energy, 2022, 166: 108734.
    [20] XIANG F R, HE Y A, WU Y W, et al. Investigation of plate fuel performance under reactivity initiated accidents with developed multi-dimensional coupled method[J]. Journal of Nuclear Materials, 2023, 583: 154537.
    [21] LIU R, PRUDIL A, ZHOU W Z, et al. Multiphysics coupled modeling of light water reactor fuel performance[J]. Progress in Nuclear Energy, 2016, 91: 38-48. doi: 10.1016/j.pnucene.2016.03.030
    [22] WANG Y Y, GUO Y H, WU Y W, et al. Preliminary analysis on the thermal-mechanical behavior of dispersed plate-type fuel under reactivity insertion accident[J]. Annals of Nuclear Energy, 2021, 163: 108509. doi: 10.1016/j.anucene.2021.108509
    [23] NASIR R, MIRZA N M, MIRZA S M. Sensitivity of reactivity insertion limits with respect to safety parameters in a typical MTR[J]. Annals of Nuclear Energy, 1999, 26(17): 1517-1535. doi: 10.1016/S0306-4549(99)00038-9
    [24] MIRZA A M, KHANAM S, MIRZA N M. Simulation of reactivity transients in current MTRs[J]. Annals of Nuclear Energy, 1998, 25(18): 1465-1484. doi: 10.1016/S0306-4549(98)00020-6
    [25] KHATER H, ABU-EL-MATY T, EL-DIN EL-MORSHDY S. Thermal-hydraulic modeling of reactivity accidents in MTR reactors[J]. Nuclear Technology and Radiation Protection, 2006, 21(2): 21-32. doi: 10.2298/NTRP0602021K
    [26] IAEA. Research reactor core conversion from the use of highly enriched uranium fuels: guidebook: IAEA-TECDOC-233[R]. Vienna: International Atomic Energy Agency, 1980.
    [27] IAEA. Research reactor core conversion guidebook: volume 4: fuels (appendices I-K): IAEA-TECDOC-643[R]. Vienna: International Atomic Energy Agency, 1992.
    [28] LUCUTA P G, MATZKE H J, HASTINGS I J. A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: review and recommendations[J]. Journal of Nuclear Materials, 1996, 232(2-3): 166-180. doi: 10.1016/S0022-3115(96)00404-7
    [29] HARDING J H, MARTIN D G. A recommendation for the thermal conductivity of UO2[J]. Journal of Nuclear Materials, 1989, 166(3): 223-226. doi: 10.1016/0022-3115(89)90218-3
    [30] SIEFKEN L J, CORYELL E W, HARVEGO E A, et al. SCDAP/RELAP5/MOD 3.3 code manual: MATPRO-A library of materials properties for light-water-reactor accident analysis: Technical Report NUREG/CR-6150[R]. Washington: Division of Systems Technology, Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission, 2001.
    [31] ALLISON C M, BERNA G A, CHAMBERS R, et al. SCDAP/RELAP5/MOD 3.1 code manual: MATPRO–A library of materials properties for light-water-reactor accident analysis: NUREG/CR-6150[R]. Washington: Idaho National Engineering Laboratory, 1993.
    [32] MAXWELL J C. A treatise on electricity and magnetism[M]. Oxford: Clarendon Press, 1873: 365.
    [33] 姜馨. 弥散型燃料的等效性质及棒状元件的辐照力学行为的研究[D]. 上海: 复旦大学,2009.
    [34] 杨烁. 核燃料元件内陶瓷颗粒的开裂行为模拟及PCI失效行为研究[D]. 西安: 西安交通大学,2021.
    [35] JIANG W, SPENCER B W, DOLBOW J E. Ceramic nuclear fuel fracture modeling with the extended finite element method[J]. Engineering Fracture Mechanics, 2020, 223: 106713. doi: 10.1016/j.engfracmech.2019.106713
    [36] 伍晓勇,王斐,温榜. UO2弥散型燃料辐照后高温失效时显微分析[J]. 核动力工程,2012, 33(1): 74-77.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  15
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-23
  • 修回日期:  2024-09-26
  • 刊出日期:  2025-01-06

目录

    /

    返回文章
    返回