高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辐照温度对反应堆压力容器材料辐照脆化行为的影响规律研究

董元元 罗英 杜华 胡甜 王晓童

董元元, 罗英, 杜华, 胡甜, 王晓童. 辐照温度对反应堆压力容器材料辐照脆化行为的影响规律研究[J]. 核动力工程, 2024, 45(S2): 102-109. doi: 10.13832/j.jnpe.2024.S2.0102
引用本文: 董元元, 罗英, 杜华, 胡甜, 王晓童. 辐照温度对反应堆压力容器材料辐照脆化行为的影响规律研究[J]. 核动力工程, 2024, 45(S2): 102-109. doi: 10.13832/j.jnpe.2024.S2.0102
Dong Yuanyuan, Luo Ying, Du Hua, Hu Tian, Wang Xiaotong. Study on Irradiation Temperature Impact on Irradiation Embrittlement Behavior of RPV Material[J]. Nuclear Power Engineering, 2024, 45(S2): 102-109. doi: 10.13832/j.jnpe.2024.S2.0102
Citation: Dong Yuanyuan, Luo Ying, Du Hua, Hu Tian, Wang Xiaotong. Study on Irradiation Temperature Impact on Irradiation Embrittlement Behavior of RPV Material[J]. Nuclear Power Engineering, 2024, 45(S2): 102-109. doi: 10.13832/j.jnpe.2024.S2.0102

辐照温度对反应堆压力容器材料辐照脆化行为的影响规律研究

doi: 10.13832/j.jnpe.2024.S2.0102
详细信息
    作者简介:

    董元元(1989—),男,博士研究生,现从事反应堆结构、老化管理等方面研究,E-mail:sshuimus@163.com

  • 中图分类号: TL341

Study on Irradiation Temperature Impact on Irradiation Embrittlement Behavior of RPV Material

  • 摘要: 反应堆压力容器(RPV)承受着强烈的中子辐照作用,随着快中子注量的累积,RPV产生不可忽视的辐照损伤,其中辐照温度是影响其辐照损伤的重要因素之一。针对辐照温度对RPV的影响机理研究,本文开展了现有预测模型分析、原位离子模拟辐照试验及多尺度模拟计算。对比分析了常用的辐照脆化预测公式,其温度适用范围为275~310℃,不适用于低温辐照条件。开展了不同温度下的原位离子辐照试验,结果表明辐照温度越高,辐照位错环尺寸越大而密度越低。多尺度模拟计算结果表明,辐照温度对辐照点缺陷的产生过程影响不明显,但对辐照缺陷的演化和平衡过程具有较明显的影响;辐照温度越低,材料辐照脆化越严重。研究揭示了辐照温度对RPV材料辐照脆化行为的影响机理及规律。

     

  • 图  1  未辐照样品析出相及位错情况

    Figure  1.  Precipitates and Dislocations Distribution in Unirradiated Sample

    图  2  未辐照样品位错攀移及针状析出相

    Figure  2.  Climb of Dislocations and Acicular Precipitates of Unirradiated Sample

    图  3  辐照位错随辐照剂量增加的演化行为

    Figure  3.  Evolution Behavior of Irradiated Dislocations with Increasing Irradiation Dose

    图  4  辐照位错环形核率及大位错环A的尺寸随剂量变化曲线

    Figure  4.  Curve of Nucleation Rate of Irradiated Dislocation Loops and Size of Loop A with Irradiation Dose

    图  5  不同温度下辐照位错环平均尺寸随辐照剂量的变化曲线

    Figure  5.  Curve of Average Sizes of Irradiated Dislocation Loops with Irradiation Dose at Different Temperatures

    图  6  不同温度下辐照位错环面密度随辐照剂量的变化曲线

    Figure  6.  Curve of Surface Densities of Irradiated Dislocation Loops with Irradiation Dose at Different Temperatures

    图  7  辐照位错环尺寸分布

    Figure  7.  Size Distribution of Irradiated Dislocation Loops

    图  8  FP数量随时间的变化规律

    Figure  8.  Curve of FP Numbers with Time

    图  9  辐照位错环尺寸演化曲线

    Figure  9.  Curves of Sizes of Irradiated Dislocation Loops with Temperature

    图  10  辐照位错环密度演化曲线

    Figure  10.  Curves of Densities of Irradiated Dislocation Loops with Temperature

    图  11  未辐照RPV材料的断裂韧性主曲线

    Figure  11.  Fracture Toughness Master Curve of Unirradiated RPV Material

    图  12  辐照后RPV材料的断裂韧性曲线

    Figure  12.  Fracture Toughness Master Curve of Irradiated RPV Material

    表  1  RPV材料主要化学成分 

    Table  1.   Main Chemical Composition of RPV Material 

    化学元素CMnSiPSCrNiMoCuCo
    含量/wt%0.16~0.221.20~
    1.60
    0.10~
    0.30
    ≤0.006≤0.005≤0.150.50~
    0.80
    0.43~
    0.57
    ≤0.05≤0.02
    下载: 导出CSV

    表  2  辐照缺陷间的相互反应

    Table  2.   Interaction between Irradiation Defects

    间隙原子与空位的复合I1 + V1 → 0
    Im + Vi → Vi-m
    Ig + Vi → Vi-g
    Vm + Ii → Ii-m
    间隙原子或空位的聚集Im + Im→Im+m
    Im+Ii→Im+i
    Ig + Ig→Ig+g
    Ig + Ii →Ig+i
    Vm+Vm→Vm+m
    Vm+Vi→Vm+i
    可移动缺陷淹没在缺陷阱上Im+S →S
    Vm+S →S
    Ig+S →S
    下载: 导出CSV
  • [1] 吕国才. 富Cu析出物对RPV钢硬化和脆化影响的计算机模拟研究[D]. 北京: 北京科技大学,2017.
    [2] KEMPF R, TROIANI H, FORTIS A M. Effect of lead factors on the embrittlement of RPV SA-508 cl 3 steel[J]. Journal of Nuclear Materials, 2013, 434(1-3): 411-416. doi: 10.1016/j.jnucmat.2012.12.004
    [3] 乔建生,四改平,张文儒. 国产A508-3钢在AP1000工况下的辐照脆化性能预测与分析[J]. 热加工工艺,2016,45(02):79-83.

    乔建生, 四改平, 张文儒. 国产A508-3钢在AP1000工况下的辐照脆化性能预测与分析[J]. 热加工工艺, 2016, 45(02): 79-83.
    [4] KOTRECHKO S, DUBINKO V, STETSENKO N, et al. Temperature dependence of irradiation hardening due to dislocation loops and precipitates in RPV steels and model alloys[J]. Journal of Nuclear Materials, 2015, 464: 6-15. doi: 10.1016/j.jnucmat.2015.04.014
    [5] SHIMODAIRA M, TOYAMA T, YOSHIDA K, et al. Contribution of irradiation-induced defects to hardening of a low-copper reactor pressure vessel steel[J]. Acta Materialia, 2018, 155: 402-409. doi: 10.1016/j.actamat.2018.06.015
    [6] MILLER M K, POWERS K A, NANSTAD R K, et al. Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences[J]. Journal of Nuclear Materials, 2013, 437(1-3): 107-115. doi: 10.1016/j.jnucmat.2013.01.312
    [7] EFSING P, JANSSON C, MAGER T, et al. Analysis of the ductile-to-brittle transition temperature shift in a commercial power plant with high nickel containing weld material[J]. Journal of ASTM International, 2007, 4(7): 1-12.
    [8] NRC. Radiation embrittlement of reactor vessel materials: regulatory guide 1.99 revision 2[S]. Washington: U. S. Nuclear Regulatory Commission, 1988.
    [9] 张敬才. NRC-RG1. 99-2中LWR-RPV辐照脆化效应预计公式讨论[J]. 核动力工程,2009,30(6): 1-7.
    [10] IAEA. Assessment and management of ageing of major nuclear power plant components important to safety: PWR pressure vessels: IAEA-TECDOC-1556[R]. Vienna: IAEA, 2007.
    [11] RSE-M. In-service inspection rules for mechanical components of PWR nuclear islands[S]. France, 1997.
    [12] RCC-M. Design and construction rules for mechanical components of PWR nuclear islands ZG6120[S]. France, 2007.
    [13] RSE-M. In-service inspection rules for mechanical components of PWR nuclear islands B6310[S]. France, 2010.
    [14] CHRISTIAN J W. Some surprising features of the plastic deformation of body-centered cubic metals and alloys[J]. Metallurgical Transactions A, 1983, 14(7): 1237-1256. doi: 10.1007/BF02664806
    [15] MONNET G, VINCENT L, DEVINCRE B. Dislocation-dynamics based crystal plasticity law for the low- and high-temperature deformation regimes of bcc crystal[J]. Acta Materialia, 2013, 61(16): 6178-6190. doi: 10.1016/j.actamat.2013.07.002
    [16] NAAMANE S, MONNET G, DEVINCRE B. Low temperature deformation in iron studied with dislocation dynamics simulations[J]. International Journal of Plasticity, 2010, 26(1): 84-92. doi: 10.1016/j.ijplas.2009.05.003
    [17] QUEYREAU S, MONNET G, DEVINCRE B. Slip systems interactions in α-iron determined by dislocation dynamics simulations[J]. International Journal of Plasticity, 2009, 25(2): 361-377. doi: 10.1016/j.ijplas.2007.12.009
    [18] CHEN L R, LIU W B, YU L, et al. Probabilistic and constitutive models for ductile-to-brittle transition in steels: a competition between cleavage and ductile fracture[J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103809. doi: 10.1016/j.jmps.2019.103809
    [19] XIAO X Z, SONG D K, XUE J M, et al. A self-consistent plasticity theory for modeling the thermo-mechanical properties of irradiated FCC metallic polycrystals[J]. Journal of the Mechanics and Physics of Solids, 2015, 78: 1-16.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  15
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-13
  • 修回日期:  2024-11-10
  • 刊出日期:  2025-01-06

目录

    /

    返回文章
    返回