Study on Irradiation Temperature Impact on Irradiation Embrittlement Behavior of RPV Material
-
摘要: 反应堆压力容器(RPV)承受着强烈的中子辐照作用,随着快中子注量的累积,RPV产生不可忽视的辐照损伤,其中辐照温度是影响其辐照损伤的重要因素之一。针对辐照温度对RPV的影响机理研究,本文开展了现有预测模型分析、原位离子模拟辐照试验及多尺度模拟计算。对比分析了常用的辐照脆化预测公式,其温度适用范围为275~310℃,不适用于低温辐照条件。开展了不同温度下的原位离子辐照试验,结果表明辐照温度越高,辐照位错环尺寸越大而密度越低。多尺度模拟计算结果表明,辐照温度对辐照点缺陷的产生过程影响不明显,但对辐照缺陷的演化和平衡过程具有较明显的影响;辐照温度越低,材料辐照脆化越严重。研究揭示了辐照温度对RPV材料辐照脆化行为的影响机理及规律。
-
关键词:
- 反应堆压力容器(RPV)材料 /
- 辐照温度 /
- 辐照脆化 /
- 原位离子辐照 /
- 多尺度模拟计算
Abstract: Reactor Pressure Vessel (RPV) suffers strong neutron radiation, which induces significant irradiation damage for RPV with the dose accumulation, and irradiation temperature is one of the key factors affecting its irradiation damage. However, at present, the research on the mechanism of irradiation temperature is insufficient. Aiming at the above problems, the existing prediction model analysis, in-situ ion simulated irradiation test and multi-scale simulation calculation are carried out. The temperature range of commonly used radiation embrittlement prediction formula is 275~310°C, which isn't applicable for low irradiation temperature condition. In-situ ion irradiation tests at different temperatures are conducted. The results show that the sizes of irradiated dislocation loops increase and the densities decrease with the increase of irradiation temperature. The results of multi-scale simulation show that the irradiation temperature has no obvious influence on the generation process of irradiation defects, but has obvious influence on the evolution and stabilization of irradiation defects. The lower the irradiation temperature, the more serious the embrittlement of materials is. The study reveals the mechanism and law of the influence of irradiation temperature on the radiation embrittlement behavior of RPV material. -
表 1 RPV材料主要化学成分
Table 1. Main Chemical Composition of RPV Material
化学元素 C Mn Si P S Cr Ni Mo Cu Co 含量/wt% 0.16~0.22 1.20~
1.600.10~
0.30≤0.006 ≤0.005 ≤0.15 0.50~
0.800.43~
0.57≤0.05 ≤0.02 表 2 辐照缺陷间的相互反应
Table 2. Interaction between Irradiation Defects
间隙原子与空位的复合 I1 + V1 → 0 Im + Vi → Vi-m Ig + Vi → Vi-g Vm + Ii → Ii-m 间隙原子或空位的聚集 Im + Im→Im+m Im+Ii→Im+i Ig + Ig→Ig+g Ig + Ii →Ig+i Vm+Vm→Vm+m Vm+Vi→Vm+i 可移动缺陷淹没在缺陷阱上 Im+S →S Vm+S →S Ig+S →S -
[1] 吕国才. 富Cu析出物对RPV钢硬化和脆化影响的计算机模拟研究[D]. 北京: 北京科技大学,2017. [2] KEMPF R, TROIANI H, FORTIS A M. Effect of lead factors on the embrittlement of RPV SA-508 cl 3 steel[J]. Journal of Nuclear Materials, 2013, 434(1-3): 411-416. doi: 10.1016/j.jnucmat.2012.12.004 [3] 乔建生,四改平,张文儒. 国产A508-3钢在AP1000工况下的辐照脆化性能预测与分析[J]. 热加工工艺,2016,45(02):79-83. 乔建生, 四改平, 张文儒. 国产A508-3钢在AP1000工况下的辐照脆化性能预测与分析[J]. 热加工工艺, 2016, 45(02): 79-83. [4] KOTRECHKO S, DUBINKO V, STETSENKO N, et al. Temperature dependence of irradiation hardening due to dislocation loops and precipitates in RPV steels and model alloys[J]. Journal of Nuclear Materials, 2015, 464: 6-15. doi: 10.1016/j.jnucmat.2015.04.014 [5] SHIMODAIRA M, TOYAMA T, YOSHIDA K, et al. Contribution of irradiation-induced defects to hardening of a low-copper reactor pressure vessel steel[J]. Acta Materialia, 2018, 155: 402-409. doi: 10.1016/j.actamat.2018.06.015 [6] MILLER M K, POWERS K A, NANSTAD R K, et al. Atom probe tomography characterizations of high nickel, low copper surveillance RPV welds irradiated to high fluences[J]. Journal of Nuclear Materials, 2013, 437(1-3): 107-115. doi: 10.1016/j.jnucmat.2013.01.312 [7] EFSING P, JANSSON C, MAGER T, et al. Analysis of the ductile-to-brittle transition temperature shift in a commercial power plant with high nickel containing weld material[J]. Journal of ASTM International, 2007, 4(7): 1-12. [8] NRC. Radiation embrittlement of reactor vessel materials: regulatory guide 1.99 revision 2[S]. Washington: U. S. Nuclear Regulatory Commission, 1988. [9] 张敬才. NRC-RG1. 99-2中LWR-RPV辐照脆化效应预计公式讨论[J]. 核动力工程,2009,30(6): 1-7. [10] IAEA. Assessment and management of ageing of major nuclear power plant components important to safety: PWR pressure vessels: IAEA-TECDOC-1556[R]. Vienna: IAEA, 2007. [11] RSE-M. In-service inspection rules for mechanical components of PWR nuclear islands[S]. France, 1997. [12] RCC-M. Design and construction rules for mechanical components of PWR nuclear islands ZG6120[S]. France, 2007. [13] RSE-M. In-service inspection rules for mechanical components of PWR nuclear islands B6310[S]. France, 2010. [14] CHRISTIAN J W. Some surprising features of the plastic deformation of body-centered cubic metals and alloys[J]. Metallurgical Transactions A, 1983, 14(7): 1237-1256. doi: 10.1007/BF02664806 [15] MONNET G, VINCENT L, DEVINCRE B. Dislocation-dynamics based crystal plasticity law for the low- and high-temperature deformation regimes of bcc crystal[J]. Acta Materialia, 2013, 61(16): 6178-6190. doi: 10.1016/j.actamat.2013.07.002 [16] NAAMANE S, MONNET G, DEVINCRE B. Low temperature deformation in iron studied with dislocation dynamics simulations[J]. International Journal of Plasticity, 2010, 26(1): 84-92. doi: 10.1016/j.ijplas.2009.05.003 [17] QUEYREAU S, MONNET G, DEVINCRE B. Slip systems interactions in α-iron determined by dislocation dynamics simulations[J]. International Journal of Plasticity, 2009, 25(2): 361-377. doi: 10.1016/j.ijplas.2007.12.009 [18] CHEN L R, LIU W B, YU L, et al. Probabilistic and constitutive models for ductile-to-brittle transition in steels: a competition between cleavage and ductile fracture[J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103809. doi: 10.1016/j.jmps.2019.103809 [19] XIAO X Z, SONG D K, XUE J M, et al. A self-consistent plasticity theory for modeling the thermo-mechanical properties of irradiated FCC metallic polycrystals[J]. Journal of the Mechanics and Physics of Solids, 2015, 78: 1-16.