Study on Shielding and Weight Reduction Characteristics of Shadow Shield with Internally Tangent Structure in Small Space Reactor
-
摘要: 核动力航天器阴影式屏蔽体质量与任务需求功率呈正相关,针对大功率航天器辐射屏蔽所需质量过大同时质量限制较大的情况,进行了阴影式屏蔽体结构优化,提出了结构优化方案和屏蔽体综合性能分析方法。利用蒙特卡罗方法对采用内切结构的阴影式屏蔽体内部和后部区域开展中子输运计算,分析了不同内切方案对屏蔽体屏蔽效果和减重效果及两者结合的综合性能的影响。结果表明,在屏蔽效果权重因子0.4、减重效果权重因子0.6的方案下,采用不超过4 cm内切圆直径的尾部内切圆环方案相较于原方案在屏蔽综合性能上有所提升;采用氢化锂相比于碳化硼材料具有更优的屏蔽体综合性能,可以在不过大影响屏蔽体的屏蔽能力下实现减重,能够为后续开展大功率核动力航天器的屏蔽减重方法研究提供思路和分析方法。Abstract: The mass of shadow shield of nuclear powered spacecraft is positively correlated with the power required by the mission. Aiming at the situation that the mass required for radiation shielding of high-power spacecraft is too large but the mass limit is too much, the shadow shield structure optimization analysis is carried out, and the structure optimization scheme and the comprehensive performance analysis method of the shield are put forward. Monte Carlo method is used to calculate the neutron transport in the inner and rear area of the shadow shield with internally tangent structure, and the effects of different internally tangent schemes on shielding effect, weight reduction effect and comprehensive performance of the combination of the two are analyzed. The results show that under the scheme of shielding effect weight factor of 0.4 and weight reduction effect weight factor of 0.6, the scheme using the tail internally tangent circle ring with the diameter less than 4 cm has improved the comprehensive shielding performance compared with the original scheme. Compared with B4C material, LiH material has better overall shielding performance and can achieve shielding weight reduction without greatly affecting shielding capability. It provides ideas and analysis methods for further research on shielding weight reduction methods for high-power nuclear spacecraft.
-
表 1 研究工况参数表
Table 1. Parameters of Research Conditions
参数 参数范围及描述 内切圆直径/cm 2~10 屏蔽材料 碳化硼、氢化锂 表 2 两种材料不同内切圆直径下的屏蔽效果和减重效果对比
Table 2. Comparison of Shielding Effect and Weight Reduction Effect of the Two Materials under Different Internally Tangent Circle Diameters
内切圆直径/cm 屏蔽效果因子 减重效果因子 碳化硼 氢化锂 碳化硼 氢化锂 2 −0.0018 −0.0010 0.0070 0.0168 4 −0.0171 −0.0223 0.0268 0.0336 6 −0.1020 −0.1117 0.0572 0.0504 8 −0.3311 −0.3162 0.0963 0.0673 10 −0.8244 −0.7600 0.1421 0.0841 -
[1] JIN Z, WANG C L, LIU X, et al. Operation and safety analysis of space lithium-cooled fast nuclear reactor[J]. Annals of Nuclear Energy, 2022, 166: 108729. doi: 10.1016/j.anucene.2021.108729 [2] 黄才勇. 空间电源的研究现状与展望[J]. 电子科学技术评论,2004(5): 1-6. [3] 徐军,康青,沈志强,等. 核防护用水泥基中子屏蔽材料的研究进展[J]. 材料开发与应用,2011, 26(5): 92-95,100. doi: 10.3969/j.issn.1003-1545.2011.05.022 [4] IAEA. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M]. Vienna: International Atomic Energy Agency, 2005: 1-6. [5] 苏著亭,杨继材,柯国土. 空间核动力[M]. 上海: 上海交通大学出版社,2016: 230-249. [6] NASA. Fission surface power system initial concept definition: NASA/TM—2010-216772[R]. Cleveland: Glenn Research Center, 2013: 1-10. [7] 陶玲. 热离子空间核电源冷却系统的研究[D]. 哈尔滨: 哈尔滨工业大学,2006: 1-11. [8] 何宇豪,孟涛,卢瑞博,等. 空间核反应堆电源研究进展[J]. 上海航天,2019, 36(6): 126-133. [9] WOLLMAN M J, ZIKA M J. Prometheus project reactor module final report, for naval reactors information: SPP-67110-0008[R]. Niskayuna: Knolls Atomic Power Laboratory (KAPL), West Mifflin: Bettis Atomic Power Laboratory (BAPL), 2006. [10] TAYLOR R. Prometheus project final report: 982-R120461[R]. Pasadena: Jet Propulsion Laboratory, 2005. [11] LEWIS R. Space shielding materials for Prometheus application: MDO-723-0049[R]. Niskayuna: Knolls Atomic Power Laboratory (KAPL), 2006. [12] 何宇豪,赵富龙,谢林,等. 控制棒对核动力航天器辐射屏蔽特性的影响[J]. 哈尔滨工程大学学报,2024, 45(2): 390-397. doi: 10.11990/jheu.202205043 [13] KING J C, DE HOLANDA MENCARINI L. Shielding analysis for a moderated low-enriched-uranium–fueled kilopower reactor[J]. Nuclear Technology, 2022, 208(7): 1137-1148. doi: 10.1080/00295450.2021.2004870 [14] ZHU K J, DOU Q R, ZHANG H, et al. The deterministic neutron transport calculation for the HTR-PM by the three-dimensional method of characteristics code ARCHER[J]. Annals of Nuclear Energy, 2024, 197: 110286. doi: 10.1016/j.anucene.2023.110286 [15] 张文书,魏晨,李兵,等. 增材制造不同微-纳粒径比B4C增强TC4复合材料组织及性能研究[J]. 材料开发与应用,2024, 39(4): 10-17.