Research on Fuel Rod Damage Diagnosis Method Based on Big Data
-
摘要: 核电厂燃料棒破损诊断(FRDD)是核电业主和核安全监管关注的重要问题。将大数据和近邻算法用于燃料棒破损诊断,并开发了压水堆燃料棒破损诊断软件,采用核电厂燃料棒破损的运行实例和理论例题进行了软件验证。验证结果为:①燃料棒破口尺寸类别分析方面,80%的分析结果与例题保持一致;②破损燃料棒数目分析方面,分析结果与例题的最大偏差为1根。基于大数据和近邻算法的压水堆燃料棒破损诊断方法,可以给出更接近实际破损情形的诊断结果,及时发现燃料棒的破损以及破损状态的变化,为反应堆燃料棒破损后的运行决策和辐射防护提供可靠依据,在确保安全的前提下提升核电厂运行的经济性。Abstract: Fuel rod damage diagnosis (FRDD) in nuclear power plants is a critical issue of concern for nuclear power plant operators and nuclear safety regulators. The application of big data and the nearest neighbor algorithm to fuel rod damage diagnosis has led to the development of a PWR (Pressurized Water Reactor) fuel rod damage diagnosis software. The software has been validated using operational cases of fuel rod damage in nuclear power plants and theoretical examples. The validation results are as follows: ① In terms of category analysis of fuel rod breach size, 80% of the analysis results are consistent with the theoretical examples; ② In terms of the analysis of the damaged fuel rod number, the maximum deviation from the theoretical examples is one rod. The FRDD methodology for PWRs, based on big data and the nearest neighbor algorithm, provides diagnostic results that are closer to the actual damage scenario. This allows for the timely detection of fuel rod damage and changes in the damage state, providing a reliable basis for operational decision-making and radiation protection after fuel rod damage. This approach can enhance the economic efficiency of nuclear power plant operations while ensuring safety.
-
Key words:
- Fuel rod damage /
- Diagnosis method /
- Big data
-
表 1 燃料棒破损诊断数据库(实测值)的格式 MBq/t
Table 1. Format of Fuel Rod Damage Diagnosis Database (Measured Values)
机组循环编号 131I比活度 132I比活度 133I比活度 134I比活度 135I比活度 85 Krm比活度 87Kr比活度 88Kr比活度 133Xe比活度 135Xe比活度 破损标记① U1C1 2.41×101 5.97×102 3.08×102 1.10×103 5.66×102 6.83×101 1.70×102 1.69×102 5.56×102 5.91×102 0 U1C2 4.23×10−1 1.67×101 9.35×100 4.18×101 2.17×101 4.90×100 3.21×100 2.97×101 1.67×101 2.21×101 0 U1C3 1.27×102 1.48×102 2.12×102 2.37×102 2.15×102 1.49×102 1.67×102 3.31×102 2.01×103 8.47×102 1 …… …… …… …… …… …… …… …… …… …… …… …… 注:①0—没有破损;1—存在破损 表 2 燃料棒破损诊断数据库(理论值)的格式
Table 2. Format of Fuel Rod Damage Diagnosis Database (Theoretical Values)
破损状态 裂变产物的R/B(理论值) 线功率密度/
(W·cm−1)等效破口
尺寸/μm燃耗深度/
[GW·d·t−1(U)]131I 132I 133I 134I 135I 85 Kr m 87Kr 88Kr 133Xe 135Xe 185 1 2 6.30×10−4 4.92×10−6 2.45×10−5 3.63×10−7 4.78×10−6 1.35×10−3 2.94×10−4 7.70×10−4 2.99×10−2 1.07×10−3 185 10 2 6.86×10−3 6.42×10−5 3.14×10−4 4.76×10−6 6.22×10−5 5.31×10−3 2.18×10−3 3.92×10−3 3.36×10−2 5.97×10−3 185 50 2 3.45×10−2 2.65×10−3 7.59×10−3 2.50×10−4 2.44×10−3 6.96×10−3 4.55×10−3 5.85×10−3 2.90×10−2 8.49×10−3 …… …… …… …… …… …… …… …… …… …… …… …… …… 表 3 燃料棒破损诊断验证例题的破损状态
Table 3. Damage Condition of Fuel Rod in Validation Example Problem for Fuel Rod Damage Diagnosis
例题编号 破损燃料棒数目/根 等效破口尺寸/μm 1 0 无破口 2 1 34 3 3 5 4 3 40 5 5 1 6 0 无破口 7 0 无破口 8 2 35~40,20~25 9 1 25~35 10 1 10~15 11 1 >25 12 1 >45 13 1 >45 14 3 20~30 表 4 燃料棒破损诊断验证例题的裂变产物源项 MBq/t
Table 4. Fission Product Source Terms in Validation Example Problem for Fuel Rod Damage Diagnosis
例题编号 131I 132I 133I 134I 135I 85 Kr m 88Kr 133Xe 135Xe 1 4.89×100 1.33×102 7.57×10 2.49×102 1.38×102 3.59×10 1.03×102 1.59×102 1.58×102 2 3.77×102 3.48×102 5.98×102 2.79×102 3.45×102 9.06×102 2.16×103 1.90×104 5.61×103 3 1.02×102 1.46×102 1.39×102 2.28×102 1.51×102 1.14×103 2.32×103 3.47×104 5.80×103 4 1.50×103 1.44×103 2.83×103 6.71×102 1.40×103 3.01×103 7.20×103 6.41×104 1.89×104 5 1.89×10 1.56×10 1.92×10 2.04×10 1.61×10 4.41×102 7.75×102 3.18×104 1.98×1033 6 5.10×10 8.54×100 4.78×100 1.64×10 1.25×10 1.63×100 6.88×100 5.18×100 7.45×100 7 4.20×10 9.57×100 5.03×100 1.75×10 1.18×10 1.84×100 7.60×100 7.16×100 8.81×100 8 5.15×10 4.52×102 2.89×102 7.25×102 4.79×102 1.86×102 4.33×102 3.93×103 1.13×103 9 9.24×10 4.31×102 3.22×102 3.71×102 3.60×102 4.34×102 7.48×102 1.82×104 2.64×103 10 3.80×100 1.01×102 4.36×10 2.02×102 8.97×10 2.23×10 4.36×10 7.03×102 1.31×102 11 8.14×10 6.82×102 3.24×102 1.19×103 5.59×102 6.09×102 1.38×103 4.21×103 3.75×103 12 4.20×10 7.67×102 4.12×102 1.29×103 7.32×102 2.94×102 5.74×102 6.47×103 1.88×103 13 1.13×102 2.33×103 1.35×103 4.19×103 2.39×103 3.89×102 1.03×103 3.21×103 2.48×103 14 8.66×102 7.48×102 1.01×103 1.03×103 8.13×102 1.16×103 2.37×103 3.55×104 7.53×103 表 5 破损燃料棒的燃耗深度验证
Table 5. Validation of Burnup for Damaged Fuel Rods
例题编号 例题燃耗深度/
[MW·d·t−1(U)]分析燃耗深度/
[MW·d·t−1(U)]偏差/% 2 1.97×104 1.60×104 −18.78 3 1.80×104 1.77×104 −1.67 4 1.00×104 8.10×103 −19.00 5 1.59×104 1.60×104 0.63 表 6 破损燃料棒的等效破口尺寸验证
Table 6. Validation of Equivalent Breach Size for Damaged Fuel Rods
例题编号 破口尺寸类别 例题 软件分析 2 较大破口 较大破口 3 中等破口 中等破口 4 较大破口 较大破口 5 小破口 小破口 8 较大破口 较大破口 9 较大破口 较大破口 10 较大破口 较大破口 11 较大破口 较大破口 12 大破口 较大破口 13 大破口 较大破口 14 较大破口 较大破口 -
[1] IAEA. Review of fuel failures in water cooled reactors (2006-2015): An Update of IAEA Nuclear Energy Series no. NF-T-2.1[R]. Vienna: IAEA, 2019: 10-11. [2] BEYER C E. Methodology estimating number of failed fuel rods and defect size: EPRI-NP-6554[R]. Palo Alto: EPRI, 1989. [3] LEWIS B J, CHAN P K, EL-JABY A, et al. Fission product release modelling for application of fuel-failure monitoring and detection-an overview[J]. Journal of Nuclear Materials, 2017, 489: 64-83. doi: 10.1016/j.jnucmat.2017.03.037 [4] Claude Leuthrot. Correlation between fission product activity in PWR water and characteristics of defects in fuel cladding. Fuel failure in normal operation of water reactors: experience, mechanisms and management: IAEA-TECDOC-709[R]. Vienna: IAEA, 1992: 67-71. [5] PARRAT D, GENIN J B, MUSANTE Y, et al. Failed rod diagnosis and primary circuit contamination level determination thanks to the DIADEME code: IAEA-TECDOC-1345[R]. Vienna: IAEA, 2003: 265-276. [6] CHIRON for WINDOWS—User’s Manual: a code for analyzing coolant and offgas activity in a light water reactor[R]. U. S. : EPRI, 1998. [7] CADE—User’s manual: coolant activity data evaluation personal computer program[R]. U. S. : Westinghouse Electric Company LLC, 1993. [8] 景福庭. 裂变产物源项分析软件FPA的研发[J]. 中国核电,2015,8(S2): 11-15.