高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

堆芯熔融事故下RPV复杂力学行为数值模拟研究

李辉 张毅雄 白晓明 邵雪娇 傅晓龙 庾明达

李辉, 张毅雄, 白晓明, 邵雪娇, 傅晓龙, 庾明达. 堆芯熔融事故下RPV复杂力学行为数值模拟研究[J]. 核动力工程, 2024, 45(S2): 168-173. doi: 10.13832/j.jnpe.2024.S2.0168
引用本文: 李辉, 张毅雄, 白晓明, 邵雪娇, 傅晓龙, 庾明达. 堆芯熔融事故下RPV复杂力学行为数值模拟研究[J]. 核动力工程, 2024, 45(S2): 168-173. doi: 10.13832/j.jnpe.2024.S2.0168
Li Hui, Zhang Yixiong, Bai Xiaoming, Shao Xuejiao, Fu Xiaolong, Yu Mingda. Numerical Simulation of RPV with Complex Mechanical Behaviors under Core-melting Accident[J]. Nuclear Power Engineering, 2024, 45(S2): 168-173. doi: 10.13832/j.jnpe.2024.S2.0168
Citation: Li Hui, Zhang Yixiong, Bai Xiaoming, Shao Xuejiao, Fu Xiaolong, Yu Mingda. Numerical Simulation of RPV with Complex Mechanical Behaviors under Core-melting Accident[J]. Nuclear Power Engineering, 2024, 45(S2): 168-173. doi: 10.13832/j.jnpe.2024.S2.0168

堆芯熔融事故下RPV复杂力学行为数值模拟研究

doi: 10.13832/j.jnpe.2024.S2.0168
基金项目: 国家自然科学基金(12102416)
详细信息
    作者简介:

    李 辉(1988—),男,高级工程师,现主要从事反应堆结构力学研究,E-mail: lhcnpi@163.com

  • 中图分类号: TL351+.6

Numerical Simulation of RPV with Complex Mechanical Behaviors under Core-melting Accident

  • 摘要: 在反应堆冷却剂丧失事故(LOCA)后,堆芯熔融物将对反应堆压力容器(RPV)下封头产生烧蚀作用,为此模拟和分析在堆芯熔融事故下RPV内壁的烧蚀及复杂力学行为对于RPV的设计、事故预防和缓解都具有重要意义。本文首先给出了近场动力学方法分析含裂纹扩展的热力耦合问题的积分列式。其次,在近场动力学方法框架下,提出了一种简便和高效的移动边界模型。其中,通过引一个标量场来直接表征物质点的烧蚀状态,使得在计算过程中不需要不断地更新计算域,从而提高计算效率。最后,采用该方法模拟了堆芯熔融物对RPV内壁的动态烧蚀和RPV在内压作用下的裂纹扩展,计算结果表明在堆芯熔融事故下RPV中同时存在弹性变形和塑性变形,而且还存在损伤断裂等复杂力学行为。

     

  • 图  1  近场动力学移动边界模型

    Figure  1.  Moving Boundary Model of Peridynamics

    图  2  RPV下封头高温烧蚀计算模型

    θ—与中轴线夹角;H—熔融物厚度;下标M—金属熔池;下标U—铀氧化物熔池;下标V—RPV

    Figure  2.  Computational Model of RPV Lower Head for Thermal Ablation

    图  3  施加在RPV内壁上的热流密度随几何角度的变化

    Figure  3.  Variation of Heat Flux Imposed on the RPV Inner Wall with the Angles

    图  4  热烧蚀作用下RPV移动的内壁轮廓

    Figure  4.  Profile of the Moving Inner Wall of RPV Caused by Thermal Ablation

    图  5  不同时刻RPV温度和烧蚀形状分布图

    Figure  5.  Temperature Contours and Ablated Shapes of RPV at Different Times

    图  6  弹性分析条件下截面路径上等效Mises应力和温度分布

    Figure  6.  Curves of Mises Stresses and Temperature Distribution for the Given Path under Elastic Condition

    图  7  烧蚀后裂纹扩展路径云图

    Figure  7.  Contour of Crack Paths After Ablation

  • [1] 赵静,余红星,李锋. 1000MW级压水堆安全壳压力温度计算分析[J]. 核动力工程,2003, 24(5): 409-411,425. doi: 10.3969/j.issn.0258-0926.2003.05.003
    [2] ANDERSON M H, HERRANZ L E, CORRADINI M L. Experimental analysis of heat transfer within the AP600 containment under postulated accident conditions[J]. Nuclear Engineering and Design, 1998, 185(2-3): 153-172. doi: 10.1016/S0029-5493(98)00232-5
    [3] 张龙飞,房保国,李凤宇. 全厂断电引发的严重事故中反应堆压力容器失效机理研究[J]. 原子能科学技术,2012, 46: 305-308. doi: 10.7538/yzk.2012.46.03.0305
    [4] THEOFANOUS T G, LIU C, ADDITION S, ANGELINI S, et al. In-vessel coolability and retention of a core melt[J]. Nuclear Engineering and Design, 1997, 169(1-3): 1-48. doi: 10.1016/S0029-5493(97)00009-5
    [5] 关仲华,余红星,江光明. 堆芯熔融物在下腔室内冷却模型研究及缓解集热效应的对策[J]. 核动力工程,2008, 29(5): 72-76.
    [6] 傅孝良,杨燕华,周卫华,杨晓. CAR 1000的IVR有效性评价堆芯融化及熔池形成过程分析[J]. 核动力工程,2010, 31(5): 102-107.
    [7] TSAI F J, LEE M, LIU H C. Simulation of the in-vessel retention device heat-removal capability of AP-1000 during a core meltdown accident[J]. Annals of Nuclear Energy, 2017, 99: 455-463. doi: 10.1016/j.anucene.2016.09.052
    [8] 张小英,姚婷婷,李志威,等. 堆芯熔融物对压力容器壁面烧蚀过程的数值模拟[J]. 核技术,2015, 38: 020606. doi: 10.11889/j.0253-3219.2015.hjs.38.020606
    [9] ZHAN D K, LIU F Y, ZHANG X Y, et al. Ablation and thermal stress analysis of RPV vessel under heating by core melt[J]. Nuclear Engineering and Design, 2018, 330: 550-558. doi: 10.1016/j.nucengdes.2018.02.008
    [10] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209. doi: 10.1016/S0022-5096(99)00029-0
    [11] SILLING S A. Linearized theory of peridynamic states[J]. Journal of Elasticity, 2010, 99(1): 85-111. doi: 10.1007/s10659-009-9234-0
    [12] HUANG D, LU G D, QIAO P Z. An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis[J]. International Journal of Mechanical Sciences, 2015, 94-95: 111-122. doi: 10.1016/j.ijmecsci.2015.02.018
    [13] BOBARU F, DUANGPANYA M. The peridynamic formulation for transient heat conduction[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20): 4047-4059. doi: 10.1016/j.ijheatmasstransfer.2010.05.024
    [14] LI H, ZHANG H W, ZHENG Y G, et al. A peridynamic model for the nonlinear static analysis of truss and tensegrity structures[J]. Computational Mechanics, 2016, 57(5): 843-858. doi: 10.1007/s00466-016-1264-4
    [15] ZHANG H W, LI H, YE H F, et al. A coupling peridynamic approach for the consolidation and dynamic analysis of saturated porous media[J]. Computational Mechanics, 2019, 64(4): 1097-1113. doi: 10.1007/s00466-019-01695-2
  • 加载中
图(7)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  18
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 修回日期:  2024-09-23
  • 刊出日期:  2025-01-06

目录

    /

    返回文章
    返回