Experimental Study on Single-phase Flow-induced Vibration Mechanism in Helical Coiled Tubes
-
摘要: 为研究螺旋盘管内单相流致振动响应演变规律,揭示面内和面外方向上的振动机制,本研究基于激光多普勒测量技术开展管内单相流致振动实验。通过开展不同入口流速下流致振动实验,结合模态分析结果,分析流速对螺旋盘管振动响应的影响,探究沿面内与面外方向上的振动响应特征。实验结果表明,螺旋盘管沿面内方向振动特性所受静力和质量有关,沿面外方向振动特性与系统质量有关。沿面外方向振动位移均方根(RMS)呈现随高度增加而减小的趋势,结合管内流体流动状态分析,揭示了管内二次流对螺旋盘管振动响应的影响机制。本研究结果能够为螺旋盘管内流致振动研究提供参考,并可为后续管内两相流致振动研究提供支撑。Abstract: To investigate the evolution of single-phase flow-induced vibration response in helical coiled tubes and elucidate the vibration mechanisms in both in-plane and out-of-plane directions, this study conducts experiments of single-phase flow-induced vibration in helical coiled tubes using laser Doppler measurement technology. By performing flow-induced vibration experiments at different inlet flow velocities and integrating modal analysis results, we examined the influence of flow velocity on coil vibration response and explored the characteristics of vibration response in both in-plane and out-of-plane directions. The experimental results indicate that the in-plane vibration characteristics of the helical coil are influenced by the static force and mass, while the out-of-plane vibration characteristics are related to the system mass. The RMS of out-of-plane vibration displacement decreases with the increase of height. By analyzing the flow state within the tube, the study reveals the impact mechanism of secondary flow on the vibration response of the helical coil. These findings can provide reference for the study of flow-induced vibration in helical coils, and can provide support for the subsequent study of two-phase flow-induced vibration in the tube.
-
表 1 实验工况表
Table 1. Experimental Conditions
工况 实验类型 入口流速
/( m·s−1)测点 测量方向 1 模态实验 P1 面内、面外 2 模态实验 P2 面内、面外 3 模态试验 P3 面内、面外 4 流致振动 1.0~2.5 P1 面内、面外 5 流致振动 1.0~2.5 P2 面内、面外 6 流致振动 1.0~2.5 P3 面内、面外 -
[1] 韩金盛,刘滨,李文强. 铅冷快堆研究概述[J]. 核科学与技术,2018, 6(3): 87-97. [2] CIONCOLINI A, SANTINI L. Two-phase pressure drop prediction in helically coiled steam generators for nuclear power applications[J]. International Journal of Heat and Mass Transfer, 2016, 100: 825-834. doi: 10.1016/j.ijheatmasstransfer.2016.05.027 [3] HARDIK B K, PRABHU S V. Heat transfer distribution in helical coil flow boiling system[J]. International Journal of Heat and Mass Transfer, 2018, 117: 710-728. doi: 10.1016/j.ijheatmasstransfer.2017.10.029 [4] JO J C, JHUNG M J. Flow-induced vibration and fretting-wear predictions of steam generator helical tubes[J]. Nuclear Engineering and Design, 2008, 238(4): 890-903. doi: 10.1016/j.nucengdes.2006.12.001 [5] YUAN H M, SOLBERG J, MERZARI E, et al. Flow-induced vibration analysis of a helical coil steam generator experiment using large eddy simulation[J]. Nuclear Engineering and Design, 2017, 322: 547-562. doi: 10.1016/j.nucengdes.2017.07.029 [6] PAÏDOUSSIS M P, LI G X. Pipes conveying fluid: a model dynamical problem[J]. Journal of Fluids and Structures, 1993, 7(2): 137-204. doi: 10.1006/jfls.1993.1011 [7] JUNG D, CHUNG J. In-plane and out-of-plane motions of an extensible semi-circular pipe conveying fluid[J]. Journal of Sound and Vibration, 2008, 311(1-2): 408-420. doi: 10.1016/j.jsv.2007.09.011 [8] JUNG D, CHUNG J, MAZZOLENI A. Dynamic stability of a semi-circular pipe conveying harmonically oscillating fluid[J]. Journal of Sound and Vibration, 2008, 315(1-2): 100-117. doi: 10.1016/j.jsv.2008.01.062 [9] DELGADO M. An experimental study on flow-induced vibration of a single and adjacent tubes within a model helical coil heat exchanger[D]. College Station: Texas A&M University, 2021. [10] PAÏDOUSSIS M P. Fluidelastic vibration of cylinder arrays in axial and cross flow: state of the art[J]. Journal of Sound and Vibration, 1981, 76(3): 329-360. doi: 10.1016/0022-460X(81)90516-2 [11] TANG M, NI Q, WANG L, et al. Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory[J]. International Journal of Engineering Science, 2014, 84: 1-10. doi: 10.1016/j.ijengsci.2014.06.007 [12] IBRAHIM R A. Overview of mechanics of pipes conveying fluids—Part I: fundamental studies[J]. Journal of Pressure Vessel Technology, 2010, 132(3): 034001. doi: 10.1115/1.4001271